首页 > 其他分享 >Deformable-DETR改进|爆改模型|在可变形编解码器之间加入RT-DETR中的CCFM模块(附代码+修改教程)

Deformable-DETR改进|爆改模型|在可变形编解码器之间加入RT-DETR中的CCFM模块(附代码+修改教程)

时间:2024-09-24 12:52:46浏览次数:14  
标签:RT CCFM nn reference src self pos points DETR

一、文本介绍

本文修改的模型是Deformable-DETR,修改的位置是在可变形编码器和可变形解码器之间,在可变形编码器和可变形解码器之间加入RT-DERT中的CCFM模块,CCFM模块的输入为可变形编码器的最高层级特征图以及backbone的输出。CCFM模块可以提升模型的特征融合能力。

二、模型图

模型架构

CCFM

三、核心代码

修改deformable_detr.py

主要新增代码

具体deformable_detr.py代码:

# ------------------------------------------------------------------------
# Deformable DETR
# Copyright (c) 2020 SenseTime. All Rights Reserved.
# Licensed under the Apache License, Version 2.0 [see LICENSE for details]
# ------------------------------------------------------------------------
# Modified from DETR (https://github.com/facebookresearch/detr)
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
# ------------------------------------------------------------------------

import copy
from typing import Optional, List
import math

import torch
import torch.nn.functional as F
from torch import nn, Tensor
from torch.nn.init import xavier_uniform_, constant_, uniform_, normal_

from util.misc import inverse_sigmoid
from models.ops.modules import MSDeformAttn

class ConvNormLayer(nn.Module):
    def __init__(self, ch_in, ch_out, kernel_size, stride, padding=None, bias=False, act=None):
        super().__init__()
        self.conv = nn.Conv2d(
            ch_in,
            ch_out,
            kernel_size,
            stride,
            padding=(kernel_size-1)//2 if padding is None else padding,
            bias=bias)
        self.norm = nn.BatchNorm2d(ch_out)
        self.act = nn.Identity() if act is None else get_activation(act)

    def forward(self, x):
        return self.act(self.norm(self.conv(x)))

class RepVggBlock(nn.Module):
    def __init__(self, ch_in, ch_out, act='relu'):
        super().__init__()
        self.ch_in = ch_in
        self.ch_out = ch_out
        self.conv1 = ConvNormLayer(ch_in, ch_out, 3, 1, padding=1, act=None)
        self.conv2 = ConvNormLayer(ch_in, ch_out, 1, 1, padding=0, act=None)
        self.act = nn.Identity() if act is None else get_activation(act)

    def forward(self, x):
        if hasattr(self, 'conv'):
            y = self.conv(x)
        else:
            y = self.conv1(x) + self.conv2(x)

        return self.act(y)

class CSPRepLayer(nn.Module):
    def __init__(self,
                 in_channels,
                 out_channels,
                 num_blocks=3,
                 expansion=1.0,
                 bias=None,
                 act="silu"):
        super(CSPRepLayer, self).__init__()
        hidden_channels = int(out_channels * expansion)
        self.conv1 = ConvNormLayer(in_channels, hidden_channels, 1, 1, bias=bias, act=act)
        self.conv2 = ConvNormLayer(in_channels, hidden_channels, 1, 1, bias=bias, act=act)
        self.bottlenecks = nn.Sequential(*[
            RepVggBlock(hidden_channels, hidden_channels, act=act) for _ in range(num_blocks)
        ])
        if hidden_channels != out_channels:
            self.conv3 = ConvNormLayer(hidden_channels, out_channels, 1, 1, bias=bias, act=act)
        else:
            self.conv3 = nn.Identity()

    def forward(self, x):
        x_1 = self.conv1(x)
        x_1 = self.bottlenecks(x_1)
        x_2 = self.conv2(x)
        return self.conv3(x_1 + x_2)


def get_activation(act: str, inpace: bool = True):
    '''get activation
    '''
    act = act.lower()

    if act == 'silu':
        m = nn.SiLU()

    elif act == 'relu':
        m = nn.ReLU()

    elif act == 'leaky_relu':
        m = nn.LeakyReLU()

    elif act == 'silu':
        m = nn.SiLU()

    elif act == 'gelu':
        m = nn.GELU()

    elif act is None:
        m = nn.Identity()

    elif isinstance(act, nn.Module):
        m = act

    else:
        raise RuntimeError('')

    if hasattr(m, 'inplace'):
        m.inplace = inpace

    return m

class DeformableTransformer(nn.Module):
    def __init__(self, d_model=256, nhead=8,
                 num_encoder_layers=6, num_decoder_layers=6, dim_feedforward=1024, dropout=0.1,
                 activation="relu", return_intermediate_dec=False,
                 num_feature_levels=4, dec_n_points=4,  enc_n_points=4,
                 two_stage=False, two_stage_num_proposals=300):
        super().__init__()

        self.d_model = d_model
        self.nhead = nhead
        self.two_stage = two_stage
        self.two_stage_num_proposals = two_stage_num_proposals

        encoder_layer = DeformableTransformerEncoderLayer(d_model, dim_feedforward,
                                                          dropout, activation,
                                                          num_feature_levels, nhead, enc_n_points)
        self.encoder = DeformableTransformerEncoder(encoder_layer, num_encoder_layers)

        decoder_layer = DeformableTransformerDecoderLayer(d_model, dim_feedforward,
                                                          dropout, activation,
                                                          num_feature_levels, nhead, dec_n_points)
        self.decoder = DeformableTransformerDecoder(decoder_layer, num_decoder_layers, return_intermediate_dec)

        self.level_embed = nn.Parameter(torch.Tensor(num_feature_levels, d_model))

        if two_stage:
            self.enc_output = nn.Linear(d_model, d_model)
            self.enc_output_norm = nn.LayerNorm(d_model)
            self.pos_trans = nn.Linear(d_model * 2, d_model * 2)
            self.pos_trans_norm = nn.LayerNorm(d_model * 2)
        else:
            self.reference_points = nn.Linear(d_model, 2)

        # top-down fpn
        self.lateral_convs = nn.ModuleList()
        self.fpn_blocks = nn.ModuleList()
        for _ in range(3 - 1, 0, -1):
            self.lateral_convs.append(ConvNormLayer(d_model, d_model, 1, 1, act=None))
            self.fpn_blocks.append(
                CSPRepLayer(d_model * 2, d_model, round(3 * 1.0), act=None, expansion=1.0)
            )

        # bottom-up pan
        self.downsample_convs = nn.ModuleList()
        self.pan_blocks = nn.ModuleList()
        for _ in range(3 - 1):
            self.downsample_convs.append(
                ConvNormLayer(d_model, d_model, 3, 2, act=None)
            )
            self.pan_blocks.append(
                CSPRepLayer(d_model * 2, d_model, round(3 * 1.0), act=None, expansion=1.0)
            )

        self._reset_parameters()

    def _reset_parameters(self):
        for p in self.parameters():
            if p.dim() > 1:
                nn.init.xavier_uniform_(p)
        for m in self.modules():
            if isinstance(m, MSDeformAttn):
                m._reset_parameters()
        if not self.two_stage:
            xavier_uniform_(self.reference_points.weight.data, gain=1.0)
            constant_(self.reference_points.bias.data, 0.)
        normal_(self.level_embed)

    def get_proposal_pos_embed(self, proposals):
        num_pos_feats = 128
        temperature = 10000
        scale = 2 * math.pi

        dim_t = torch.arange(num_pos_feats, dtype=torch.float32, device=proposals.device)
        dim_t = temperature ** (2 * (dim_t // 2) / num_pos_feats)
        # N, L, 4
        proposals = proposals.sigmoid() * scale
        # N, L, 4, 128
        pos = proposals[:, :, :, None] / dim_t
        # N, L, 4, 64, 2
        pos = torch.stack((pos[:, :, :, 0::2].sin(), pos[:, :, :, 1::2].cos()), dim=4).flatten(2)
        return pos

    def gen_encoder_output_proposals(self, memory, memory_padding_mask, spatial_shapes):
        N_, S_, C_ = memory.shape
        base_scale = 4.0
        proposals = []
        _cur = 0
        for lvl, (H_, W_) in enumerate(spatial_shapes):
            mask_flatten_ = memory_padding_mask[:, _cur:(_cur + H_ * W_)].view(N_, H_, W_, 1)
            valid_H = torch.sum(~mask_flatten_[:, :, 0, 0], 1)
            valid_W = torch.sum(~mask_flatten_[:, 0, :, 0], 1)

            grid_y, grid_x = torch.meshgrid(torch.linspace(0, H_ - 1, H_, dtype=torch.float32, device=memory.device),
                                            torch.linspace(0, W_ - 1, W_, dtype=torch.float32, device=memory.device))
            grid = torch.cat([grid_x.unsqueeze(-1), grid_y.unsqueeze(-1)], -1)

            scale = torch.cat([valid_W.unsqueeze(-1), valid_H.unsqueeze(-1)], 1).view(N_, 1, 1, 2)
            grid = (grid.unsqueeze(0).expand(N_, -1, -1, -1) + 0.5) / scale
            wh = torch.ones_like(grid) * 0.05 * (2.0 ** lvl)
            proposal = torch.cat((grid, wh), -1).view(N_, -1, 4)
            proposals.append(proposal)
            _cur += (H_ * W_)
        output_proposals = torch.cat(proposals, 1)
        output_proposals_valid = ((output_proposals > 0.01) & (output_proposals < 0.99)).all(-1, keepdim=True)
        output_proposals = torch.log(output_proposals / (1 - output_proposals))
        output_proposals = output_proposals.masked_fill(memory_padding_mask.unsqueeze(-1), float('inf'))
        output_proposals = output_proposals.masked_fill(~output_proposals_valid, float('inf'))

        output_memory = memory
        output_memory = output_memory.masked_fill(memory_padding_mask.unsqueeze(-1), float(0))
        output_memory = output_memory.masked_fill(~output_proposals_valid, float(0))
        output_memory = self.enc_output_norm(self.enc_output(output_memory))
        return output_memory, output_proposals

    def get_valid_ratio(self, mask):
        _, H, W = mask.shape
        valid_H = torch.sum(~mask[:, :, 0], 1)
        valid_W = torch.sum(~mask[:, 0, :], 1)
        valid_ratio_h = valid_H.float() / H
        valid_ratio_w = valid_W.float() / W
        valid_ratio = torch.stack([valid_ratio_w, valid_ratio_h], -1)
        return valid_ratio

    def forward(self, srcs, masks, pos_embeds, query_embed=None):
        assert self.two_stage or query_embed is not None

        # prepare input for encoder
        src_flatten = []
        mask_flatten = []
        lvl_pos_embed_flatten = []
        spatial_shapes = []
        feats = []
        hws = []
        for lvl, (src, mask, pos_embed) in enumerate(zip(srcs, masks, pos_embeds)):
            if lvl != 0:
                feats.append(src)
            bs, c, h, w = src.shape
            hw = [h, w]
            hws.append(hw)
            spatial_shape = (h, w)
            spatial_shapes.append(spatial_shape)
            src = src.flatten(2).transpose(1, 2)
            mask = mask.flatten(1)
            pos_embed = pos_embed.flatten(2).transpose(1, 2)
            lvl_pos_embed = pos_embed + self.level_embed[lvl].view(1, 1, -1)
            lvl_pos_embed_flatten.append(lvl_pos_embed)
            src_flatten.append(src)
            mask_flatten.append(mask)
        src_flatten = torch.cat(src_flatten, 1)
        mask_flatten = torch.cat(mask_flatten, 1)
        lvl_pos_embed_flatten = torch.cat(lvl_pos_embed_flatten, 1)
        spatial_shapes = torch.as_tensor(spatial_shapes, dtype=torch.long, device=src_flatten.device)
        level_start_index = torch.cat((spatial_shapes.new_zeros((1, )), spatial_shapes.prod(1).cumsum(0)[:-1]))
        valid_ratios = torch.stack([self.get_valid_ratio(m) for m in masks], 1)

        # encoder
        memory = self.encoder(src_flatten, spatial_shapes, level_start_index, valid_ratios, lvl_pos_embed_flatten, mask_flatten)

        fla_src0_1 = memory[:, :hws[0][0] * hws[0][1], :]
        tmp_1 = memory[:, hws[0][0] * hws[0][1]:, :]
        tmp_2 = tmp_1[:, hws[1][0] * hws[1][1]:, :]
        fla_src3_1 = tmp_2[:, hws[2][0] * hws[2][1]:, :]

        src3_1 = fla_src3_1.permute(0, 2, 1).view(-1, 256, hws[3][0], hws[3][1])
        src0 = fla_src0_1.permute(0, 2, 1).view(-1, 256, hws[0][0], hws[0][1])

        proj_feats = feats
        proj_feats[2] = src3_1
        # broadcasting and fusion
        inner_outs = [proj_feats[-1]]
        for idx in range(3 - 1, 0, -1):
            feat_high = inner_outs[0]
            feat_low = proj_feats[idx - 1]
            feat_high = self.lateral_convs[3 - 1 - idx](feat_high)
            inner_outs[0] = feat_high
            upsample_feat = F.interpolate(feat_high, size=(feat_low.shape[2], feat_low.shape[3]), mode='nearest')
            inner_out = self.fpn_blocks[3-1-idx](torch.concat([upsample_feat, feat_low], dim=1))
            inner_outs.insert(0, inner_out)

        outs = [inner_outs[0]]
        for idx in range(3 - 1):
            feat_low = outs[-1]
            feat_high = inner_outs[idx + 1]
            downsample_feat = self.downsample_convs[idx](feat_low)
            out = self.pan_blocks[idx](torch.concat([downsample_feat, feat_high], dim=1))
            outs.append(out)

        outs.insert(0, src0)
        src_flatten_outs = []
        for out in outs:
            src_flatten_out = out.flatten(2).transpose(1, 2)
            src_flatten_outs.append(src_flatten_out)
        src_flatten_outs = torch.cat(src_flatten_outs, 1)
        memory = memory + src_flatten_outs

        # prepare input for decoder
        bs, _, c = memory.shape
        if self.two_stage:
            output_memory, output_proposals = self.gen_encoder_output_proposals(memory, mask_flatten, spatial_shapes)

            # hack implementation for two-stage Deformable DETR
            enc_outputs_class = self.decoder.class_embed[self.decoder.num_layers](output_memory)
            enc_outputs_coord_unact = self.decoder.bbox_embed[self.decoder.num_layers](output_memory) + output_proposals

            topk = self.two_stage_num_proposals
            topk_proposals = torch.topk(enc_outputs_class[..., 0], topk, dim=1)[1]
            topk_coords_unact = torch.gather(enc_outputs_coord_unact, 1, topk_proposals.unsqueeze(-1).repeat(1, 1, 4))
            topk_coords_unact = topk_coords_unact.detach()
            reference_points = topk_coords_unact.sigmoid()
            init_reference_out = reference_points
            pos_trans_out = self.pos_trans_norm(self.pos_trans(self.get_proposal_pos_embed(topk_coords_unact)))
            query_embed, tgt = torch.split(pos_trans_out, c, dim=2)
        else:
            query_embed, tgt = torch.split(query_embed, c, dim=1)
            query_embed = query_embed.unsqueeze(0).expand(bs, -1, -1)
            tgt = tgt.unsqueeze(0).expand(bs, -1, -1)
            reference_points = self.reference_points(query_embed).sigmoid()
            init_reference_out = reference_points

        # decoder
        hs, inter_references = self.decoder(tgt, reference_points, memory,
                                            spatial_shapes, level_start_index, valid_ratios, query_embed, mask_flatten)

        inter_references_out = inter_references
        if self.two_stage:
            return hs, init_reference_out, inter_references_out, enc_outputs_class, enc_outputs_coord_unact
        return hs, init_reference_out, inter_references_out, None, None


class DeformableTransformerEncoderLayer(nn.Module):
    def __init__(self,
                 d_model=256, d_ffn=1024,
                 dropout=0.1, activation="relu",
                 n_levels=4, n_heads=8, n_points=4):
        super().__init__()

        # self attention
        self.self_attn = MSDeformAttn(d_model, n_levels, n_heads, n_points)
        self.dropout1 = nn.Dropout(dropout)
        self.norm1 = nn.LayerNorm(d_model)

        # ffn
        self.linear1 = nn.Linear(d_model, d_ffn)
        self.activation = _get_activation_fn(activation)
        self.dropout2 = nn.Dropout(dropout)
        self.linear2 = nn.Linear(d_ffn, d_model)
        self.dropout3 = nn.Dropout(dropout)
        self.norm2 = nn.LayerNorm(d_model)

    @staticmethod
    def with_pos_embed(tensor, pos):
        return tensor if pos is None else tensor + pos

    def forward_ffn(self, src):
        src2 = self.linear2(self.dropout2(self.activation(self.linear1(src))))
        src = src + self.dropout3(src2)
        src = self.norm2(src)
        return src

    def forward(self, src, pos, reference_points, spatial_shapes, level_start_index, padding_mask=None):
        # self attention
        src2 = self.self_attn(self.with_pos_embed(src, pos), reference_points, src, spatial_shapes, level_start_index, padding_mask)
        src = src + self.dropout1(src2)
        src = self.norm1(src)

        # ffn
        src = self.forward_ffn(src)

        return src


class DeformableTransformerEncoder(nn.Module):
    def __init__(self, encoder_layer, num_layers):
        super().__init__()
        self.layers = _get_clones(encoder_layer, num_layers)
        self.num_layers = num_layers

    @staticmethod
    def get_reference_points(spatial_shapes, valid_ratios, device):
        reference_points_list = []
        for lvl, (H_, W_) in enumerate(spatial_shapes):

            ref_y, ref_x = torch.meshgrid(torch.linspace(0.5, H_ - 0.5, H_, dtype=torch.float32, device=device),
                                          torch.linspace(0.5, W_ - 0.5, W_, dtype=torch.float32, device=device))
            ref_y = ref_y.reshape(-1)[None] / (valid_ratios[:, None, lvl, 1] * H_)
            ref_x = ref_x.reshape(-1)[None] / (valid_ratios[:, None, lvl, 0] * W_)
            ref = torch.stack((ref_x, ref_y), -1)
            reference_points_list.append(ref)
        reference_points = torch.cat(reference_points_list, 1)
        reference_points = reference_points[:, :, None] * valid_ratios[:, None]
        return reference_points

    def forward(self, src, spatial_shapes, level_start_index, valid_ratios, pos=None, padding_mask=None):
        output = src
        reference_points = self.get_reference_points(spatial_shapes, valid_ratios, device=src.device)
        for _, layer in enumerate(self.layers):
            output = layer(output, pos, reference_points, spatial_shapes, level_start_index, padding_mask)

        return output


class DeformableTransformerDecoderLayer(nn.Module):
    def __init__(self, d_model=256, d_ffn=1024,
                 dropout=0.1, activation="relu",
                 n_levels=4, n_heads=8, n_points=4):
        super().__init__()

        # cross attention
        self.cross_attn = MSDeformAttn(d_model, n_levels, n_heads, n_points)
        self.dropout1 = nn.Dropout(dropout)
        self.norm1 = nn.LayerNorm(d_model)

        # self attention
        self.self_attn = nn.MultiheadAttention(d_model, n_heads, dropout=dropout)
        self.dropout2 = nn.Dropout(dropout)
        self.norm2 = nn.LayerNorm(d_model)

        # ffn
        self.linear1 = nn.Linear(d_model, d_ffn)
        self.activation = _get_activation_fn(activation)
        self.dropout3 = nn.Dropout(dropout)
        self.linear2 = nn.Linear(d_ffn, d_model)
        self.dropout4 = nn.Dropout(dropout)
        self.norm3 = nn.LayerNorm(d_model)

    @staticmethod
    def with_pos_embed(tensor, pos):
        return tensor if pos is None else tensor + pos

    def forward_ffn(self, tgt):
        tgt2 = self.linear2(self.dropout3(self.activation(self.linear1(tgt))))
        tgt = tgt + self.dropout4(tgt2)
        tgt = self.norm3(tgt)
        return tgt

    def forward(self, tgt, query_pos, reference_points, src, src_spatial_shapes, level_start_index, src_padding_mask=None):
        # self attention
        q = k = self.with_pos_embed(tgt, query_pos)
        tgt2 = self.self_attn(q.transpose(0, 1), k.transpose(0, 1), tgt.transpose(0, 1))[0].transpose(0, 1)
        tgt = tgt + self.dropout2(tgt2)
        tgt = self.norm2(tgt)

        # cross attention
        tgt2 = self.cross_attn(self.with_pos_embed(tgt, query_pos),
                               reference_points,
                               src, src_spatial_shapes, level_start_index, src_padding_mask)
        tgt = tgt + self.dropout1(tgt2)
        tgt = self.norm1(tgt)

        # ffn
        tgt = self.forward_ffn(tgt)

        return tgt


class DeformableTransformerDecoder(nn.Module):
    def __init__(self, decoder_layer, num_layers, return_intermediate=False):
        super().__init__()
        self.layers = _get_clones(decoder_layer, num_layers)
        self.num_layers = num_layers
        self.return_intermediate = return_intermediate
        # hack implementation for iterative bounding box refinement and two-stage Deformable DETR
        self.bbox_embed = None
        self.class_embed = None

    def forward(self, tgt, reference_points, src, src_spatial_shapes, src_level_start_index, src_valid_ratios,
                query_pos=None, src_padding_mask=None):
        output = tgt

        intermediate = []
        intermediate_reference_points = []
        for lid, layer in enumerate(self.layers):
            if reference_points.shape[-1] == 4:
                reference_points_input = reference_points[:, :, None] \
                                         * torch.cat([src_valid_ratios, src_valid_ratios], -1)[:, None]
            else:
                assert reference_points.shape[-1] == 2
                reference_points_input = reference_points[:, :, None] * src_valid_ratios[:, None]
            output = layer(output, query_pos, reference_points_input, src, src_spatial_shapes, src_level_start_index, src_padding_mask)

            # hack implementation for iterative bounding box refinement
            if self.bbox_embed is not None:
                tmp = self.bbox_embed[lid](output)
                if reference_points.shape[-1] == 4:
                    new_reference_points = tmp + inverse_sigmoid(reference_points)
                    new_reference_points = new_reference_points.sigmoid()
                else:
                    assert reference_points.shape[-1] == 2
                    new_reference_points = tmp
                    new_reference_points[..., :2] = tmp[..., :2] + inverse_sigmoid(reference_points)
                    new_reference_points = new_reference_points.sigmoid()
                reference_points = new_reference_points.detach()

            if self.return_intermediate:
                intermediate.append(output)
                intermediate_reference_points.append(reference_points)

        if self.return_intermediate:
            return torch.stack(intermediate), torch.stack(intermediate_reference_points)

        return output, reference_points


def _get_clones(module, N):
    return nn.ModuleList([copy.deepcopy(module) for i in range(N)])


def _get_activation_fn(activation):
    """Return an activation function given a string"""
    if activation == "relu":
        return F.relu
    if activation == "gelu":
        return F.gelu
    if activation == "glu":
        return F.glu
    raise RuntimeError(F"activation should be relu/gelu, not {activation}.")


def build_deforamble_transformer(args):
    return DeformableTransformer(
        d_model=args.hidden_dim,
        nhead=args.nheads,
        num_encoder_layers=args.enc_layers,
        num_decoder_layers=args.dec_layers,
        dim_feedforward=args.dim_feedforward,
        dropout=args.dropout,
        activation="relu",
        return_intermediate_dec=True,
        num_feature_levels=args.num_feature_levels,
        dec_n_points=args.dec_n_points,
        enc_n_points=args.enc_n_points,
        two_stage=args.two_stage,
        two_stage_num_proposals=args.num_queries)


标签:RT,CCFM,nn,reference,src,self,pos,points,DETR
From: https://blog.csdn.net/m0_51665349/article/details/142486666

相关文章

  • Arthas jvm(查看当前JVM的信息)
    文章目录二、命令列表2.1jvm相关命令2.1.3jvm(查看当前JVM的信息)二、命令列表2.1jvm相关命令2.1.3jvm(查看当前JVM的信息)基础语法:jvm[arthas@18139]$jvmRUNTIME......
  • Arthas thread(查看当前JVM的线程堆栈信息)
    文章目录二、命令列表2.1jvm相关命令2.1.2thread(查看当前JVM的线程堆栈信息)举例1:展示[数字]线程的运行堆栈,命令:thread线程ID举例2:找出当前阻塞其他线程的线程二、命令列表2.1jvm相关命令2.1.2thread(查看当前JVM的线程堆栈信息)使用场景:在Arthas中,thread命令用于查看和分......
  • Arthas dashboard(当前系统的实时数据面板)
    文章目录二、命令列表2.1jvm相关命令2.1.1dashboard(当前系统的实时数据面板)二、命令列表2.1jvm相关命令2.1.1dashboard(当前系统的实时数据面板)使用场景:在Arthas中,dashboard命令用于提供JVM实例的实时监控视图。它展示了一个综合的仪表盘,帮助你快速查看JVM的各种关键......
  • springboot配置多个环境的properties之 常规配置
    在SpringBoot中,你可以通过多个配置文件来为不同的环境配置不同的属性。这些配置文件应该有不同的命名,并且可以放在src/main/resources目录下。你可以使用application.properties作为默认配置。然后,为不同的环境创建特定的配置文件,比如:application-dev.properties:开发环......
  • 【Unity】CinemachineVirtualCamera:实现第一人称视角控制
    相机视角的控制,利用CinemachineVirtualCamera插件(在packageManager中下载)实现键盘和鼠标控制第一人称视角。WASD前进后退向左向右,QE左右旋转;鼠标滚轮控制远近、俯仰和升降。另外还支持鼠标靠近边缘移动、鼠标拖拽等控制方式。成果展示Scene部分主相机增加CinemachineBrain组......
  • echarts两饼图连接映射
    最近开发中,突然来了一个echarts还要很快开发出来。。要老命了,遭老罪了。。先看需求图思考了半天还是有点思路,前端画图不就是搭积木嘛。1.中间蓝色阴影部分用canvas来做2.获取容器和饼图在页面上的位置,绘制梯形3.使用2个mask作为饼图圆心,用于遮挡echarts中心位置的梯......
  • 报表控件DevExpress Reports v24.1 —— 拥有可调整布局选项
    DevExpressReports提供了一个可调整的布局选项,允许您以最合适的方式安排、塑造和组织数据。其中一个这样的数据塑造选项是分组,可以在表报告的详细信息带内将数据安排在嵌套的多字段组中。在v24.1版本周期中引入了几个函数,它们允许您获取不同组元素的索引,这些新功能包括:CurrentR......