- GraphRAG 与 RAG 的比较分析
检索增强生成(RAG)技术概述检索增强生成(Retrieval-AugmentedGeneration,简称RAG)是一种旨在提升大型语言模型(LargeLanguageModels,LLMs)性能的技术方法。其核心思想是通过整合外部可靠知识库的信息来增强模型的输出质量。RAG的工作原理可以概括如下:当LLM接收到查询时,它不仅依赖......
- RAG+Agent人工智能平台:RAGflow实现GraphRAG知识库问答,打造极致多模态问答与AI编排流体
RAG+Agent人工智能平台:RAGflow实现GraphRAG知识库问答,打造极致多模态问答与AI编排流体验1.RAGflow简介最近更新:2024-09-13增加知识库问答搜索模式。2024-09-09在Agent中加入医疗问诊模板。2024-08-22支持用RAG技术实现从自然语言到SQL语句的转换。2024-08-02......
- qwen2.5 vllm推理;openai function call调用中文离线agents使用
参考:https://qwenlm.github.io/zh/blog/qwen2.5/https://qwen.readthedocs.io/zh-cn/latest/framework/function_call.html#vllm安装:pipinstall-Uvllm-ihttps://pypi.tuna.tsinghua.edu.cn/simplevllm-0.6.1.post2运行:</......
- 论文阅读-ChatDev_Communicative Agents for Software Development
1.摘要软件开发时一个需要多人合作的复杂任务。过去的一些方法针对瀑布模型中的某个流程进行深度学习,导致整个开发流程不连续、效率低。本文提出了ChatDev框架,其中多个特殊的智能体通过LLM驱动,通过chatchain引导交流内容,通过communicativedehallucination引导如何交流。这些......
- 使用AgentScope构建多智能体群聊系统
本文将介绍如何使用AgentScope框架构建一个简单的多智能体群聊系统,并解释其背后的实现逻辑。首先写好设置文件。agent_config.json[{"class":"DialogAgent","args":{"name":"Lingfeng","sys_prompt":"......
- autoGPT metagpt crewAI langgraph autogen camel 哪些框架适用于多模态场景?(文心一言)
autoGPTmetagptcrewAIlanggraphautogencamel哪些框架适用于多模态场景?特点:CrewAI是一个专门用于创建多模态代理的技术,能够同时处理文本、图像和音频数据。它提供了构建多模态代理所需的工具和库,使得开发者能够更容易地集成不同模型以处理多种数据类型。应用场景:适用于......
- awesome-ai-agents
awesome-ai-agentshttps://datawhalechina.github.io/hugging-multi-agent/chapter2/AIAgent%E7%9F%A5%E8%AF%86%E4%BD%93%E7%B3%BB%E7%BB%93%E6%9E%84/#213-sy1sy2agent https://github.com/e2b-dev/awesome-ai-agents https://www.breezedeus.com/article/ai-agen......
- 全网最火的AI技术:GraphRag概念详解
GraphRAG是一种结合了知识图谱(KnowledgeGraph)和大语言模型(LLM)的检索增强生成(Retrieval-AugmentedGeneration,RAG)技术,旨在通过将结构化和非结构化数据相结合来增强生成式AI的表现。它的出现代表了人工智能生成技术与知识表示领域的一次重要融合,为许多需要复杂信息检索和生成的应......
- 构建基于Qwen API 的AgentScope 聊天机器人
环境搭建与库安装首先,我们需要创建一个Python3.10环境。你可以使用conda来创建一个新的虚拟环境,并激活它:condacreate-npy310python==3.10condaactivatepy310接着,安装所需的库agentscope,由于它可能处于预发布阶段,因此我们需要指定--pre标志:pipinstallagentscope--pre获取......
- 本地ollama的LLM模型运行微软GraphRAG
pipinstallgraphragpipinstallollama1、ollama安装直接从modelscope下载ollama安装包modelscopedownload--model=modelscope/ollama-linux--local_dir./ollama-linux#运行ollama安装脚本sudochmod777./ollama-linux/ollama-modelscope-install.shsh./ollam......