首页 > 其他分享 >线程(函数接口、同步、互斥、条件变量)

线程(函数接口、同步、互斥、条件变量)

时间:2024-08-30 20:26:14浏览次数:13  
标签:return int 接口 互斥 线程 pthread mutex NULL

线程 Thread

1.什么是线程

1.1 概念

线程是一个轻量级的进程,为了提高系统的性能引入线程。

线程和进程是参与统一的调度。

在同一个进程中可以创建的多个线程, 共享进程资源。

(Linux里同样用task_struct来描述一个线程)

1.2 进程和线程区别

相同点:

都为系统提供了并发执行的能力

不同点:

调度和资源: 线程是系统调度的最小单位; 进程是资源分配的最小单位。

地址空间方面: 同一个进程创建的多个线程共享该进程的资源;进程的地址空间相互独立。

通信方面: 线程通信相对简单,只需要通过全局变量可以实现,但是需要考虑临界资源访问的问题;进程通信比较复杂,需要借助进程间的通信机制(借助3g-4g内核空间)

安全性方面: 线程安全性差一些,当进程结束时会导致所有线程退出;进程相对安全。

练习题:程序什么时候该使用线程?什么时候用进程?

对资源的管理和保护要求高,不限制开销和效率时,使用多进程。

要求效率高、速度快的高并发环境时,需要频繁创建、销毁或切换时,资源的保护管理要求不是很高时,使用多线程。

1.3 线程资源

共享的资源:可执行的指令、静态数据、进程中打开的文件描述符、信号处理函数、当前工作目录、用户ID、用户组ID

私有的资源:线程ID (TID)、PC(程序计数器)和相关寄存器、堆栈(局部变量, 返回地址)、错误号 (errno)、信号掩码和优先级、执行状态和属性

2.函数接口

2.1 创建线程: pthread_create

int pthread_create(pthread_t *thread, const pthread_attr_t *attr, 
                                void *(*start_routine) (void *), void *arg);
功能:创建线程
参数:      thread:线程标识
            attr:线程属性, NULL:代表设置默认属性
            start_routine:函数名:代表线程函数(自己写的)
            arg:用来给前面函数传参
返回值:成功:0
      失败:错误码
      
编译的时候需要加 -pthread 链接动态库

函数指针格式: 数据类型 (* 指针名)(参数列表);

#include <stdio.h>
#include <stdlib.h>
int test(int (*p)(int, int), int a, int b) //p=fun, a=3, b=4
{
    return p(a,b); //fun(3,4);
}
int fun(int n, int m)  //n=3, m=4
{
    return n * m;  //3*4=12
}

int main(int argc, char const *argv[])
{
      printf("%d\n", test(fun, 3, 4));  //12
      return 0;
}

例子:

#include <stdio.h>
#include <pthread.h>

void *handler_thread(void *arg)
{
    printf("in handler_thread\n");
    while (1)
        ; //不让线程退出
    return NULL;
}

int main(int argc, char const *argv[])
{
    pthread_t tid;
    if (pthread_create(&tid, NULL, handler_thread, NULL) != 0)  //创建线程
    {
        perror("phtread err");
        return -1;
    }
    printf("in main\n");
    while(1);  //让主线程不要结束
    return 0;
}


2.2 退出线程: pthread_exit

void  pthread_exit(void *value_ptr) 
功能:用于退出线程的执行
参数:value_ptr:线程退出时返回的值
#include <stdio.h>
#include <pthread.h>

void *handler_thread(void *arg)
{
    printf("in handler_thread\n");
    pthread_exit(NULL);   //退出当前线程
    while (1)
        ; //不让线程退出
    return NULL;
}

int main(int argc, char const *argv[])
{
    pthread_t tid;
    if (pthread_create(&tid, NULL, handler_thread, NULL) != 0) //创建线程
    {
        perror("phtread err");
        return -1;
    }
    printf("in main\n");
    while (1)
        ; //让主线程不要结束
    return 0;
}

2.3 回收线程资源

int  pthread_join(pthread_t thread,  void **value_ptr) 
功能:用于等待一个指定的线程结束,阻塞函数
参数:thread:创建的线程对象,线程ID
     value_ptr:指针*value_ptr 用于指向线程返回的参数, 一般为NULL
返回值:成功 : 0
       失败:errno

int pthread_detach(pthread_t thread);
功能:让线程结束时自动回收线程资源,让线程和主线程分离,非阻塞函数
参数:thread:线程ID
非阻塞式的,例如主线程分离(detach)了线程T2,那么主线程不会阻塞在pthread_detach(),pthread_detach()会直接返回,线程T2终止后会被操作系统自动回收资源


#include <stdio.h>
#include <pthread.h>
#include <unistd.h>

void *handler_thread(void *arg)
{
    printf("in handler_thread\n");
    sleep(2);
    pthread_exit(NULL); //退出当前线程
    while (1)
        ; //不让线程退出
    return NULL;
}

int main(int argc, char const *argv[])
{
    pthread_t tid;
    if (pthread_create(&tid, NULL, handler_thread, NULL) != 0) //创建线程
    {
        perror("phtread err");
        return -1;
    }

    // pthread_join(tid, NULL);   //阻塞等待指定的线程结束然后给其回收资源
    pthread_detach(tid);     //不阻塞,让指定线程结束时自动回收资源
    printf("in main\n");
    while (1)
        ; //让主线程不要结束
    return 0;
}
练习: 通过父子进程完成对文件的拷贝(cp)

通过父子进程完成对文件的拷贝(cp),父进程从文件开始到文件的一半开始拷贝,子进程从文件的一半到文件末尾。要求:文件IO cp src dest

  1. 文件长度获取: lseek
  2. 子进程定位到文件一半: lseek
  3. 父进程怎么准确读到文件一半的位置?
  4. fork之前打开文件,父子进程读写时,位置指针是同一个
#include <stdio.h>
#include <unistd.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <sys/types.h>
#include <sys/wait.h>

int main(int argc, char const *argv[])
{
    int fd1, fd2;
    pid_t pid;
    char buf[32] = "";
    ssize_t n;
    if (argc != 3)
    {
        printf("err: %s <srcfile> <destfile>\n", argv[0]);
        return -1;
    }

    fd1 = open(argv[1], O_RDONLY);
    if (fd1 < 0)
    {
        perror("fd1 err");
        return -1;
    }
    fd2 = open(argv[2], O_WRONLY | O_CREAT | O_TRUNC, 0777);
    if (fd2 < 0)
    {
        perror("fd2 err");
        return -1;
    }

    //获取源文件长度的一半
    off_t len = lseek(fd1, 0, 2) / 2;

    //创建子进程
    pid = fork();
    if (pid < 0)
    {
        perror("fork err");
        return -1;
    }
    else if (pid == 0) //拷贝后半段
    {
        //定位到一半的位置
        lseek(fd1, len, 0);
        lseek(fd2, len, 0);

        //读源文件,写入目标文件
        while ((n = read(fd1, buf, 32)) > 0)
        {
            write(fd2, buf, n);
            sleep(1);
        }
    }
    else //拷贝前半段
    {
        wait(NULL); //等子进程读写完父进程再拷贝
        //定位到文件开头
        lseek(fd1, 0, 0);
        lseek(fd2, 0, 0);

        //读源文件,写入目标文件
        while (len > 0)
        {
            if (len > 32)
                n = read(fd1, buf, 32);
            else
                n = read(fd1, buf, len);
            write(fd2, buf, n);
            len -= n;   //len保存的是剩余要读的字符个数
            sleep(1);
        }
    }
    close(fd1);
    close(fd2);

    return 0;
}

练习:输入输出,quit结束

通过线程实现数据的交互,主线程循环从终端输入,线程函数将数据循环输出,当输入quit结束程序。

  1. 全局变量进行通信
  2. 加上标志位(flag),实现主线程输入一次,线程函数打印一次, int flag = 0;
#include <stdio.h>
#include <pthread.h>
#include <string.h>
char s[32];
int flag = 0; //为了进行线程间通讯,保证主线程先输入然后从线程再输出

void *handler_thread(void *arg)
{
    while (1)
    {
        if (flag == 1) //主线程输入完将flag置1从线程再输出
        {
            if (strcmp(s, "quit") == 0)
                break;
            printf("%s\n", s);
            flag--;
        }
    }
    return NULL;
}

int main(int argc, char const *argv[])
{
    pthread_t tid;
    if (pthread_create(&tid, NULL, handler_thread, NULL) != 0)
    {
        perror("err");
        return -1;
    }

    while (1)
    {
        //scanf前也可以不加if判断,利用阻塞时间让从线程输出
        // if (flag == 0)  //从线程输出完将flag置0主线程再输入
        // {
            scanf("%s", s);
            flag++;

            if (strcmp(s, "quit") == 0)
                break;
        // }
    }
}


3.同步

3.1 概念

同步(synchronization)指的是多个任务(线程)按照约定的顺序相互配合完成一件事情

(异步:异步则反之,并非一定需要一件事做完再做另一件事。)

3.2 同步机制

通过信号量实现线程间同步。

信号量:通过信号量实现同步操作;由信号量来决定线程是继续运行还是阻塞等待。

信号量代表某一类资源,其值表示系统中该资源的数量:

信号量的值>0, 表示有资源可以用, 可以申请到资源。

信号量的值<=0, 表示没有资源可以用, 无法申请到资源, 阻塞。

信号量还是一个受保护的变量,只能通过三种操作来访问:初始化、P操作(申请资源)、V操作(释放资源)

sem_init: 信号量初始化

sem_wait: 申请资源,P操作,如果没有资源可以用会阻塞等待,直到有资源可用结束阻塞资源-1。

sem_post: 释放资源,V操作,非阻塞,资源+1。

3.3 函数接口

int  sem_init(sem_t *sem,  int pshared,  unsigned int value)  
功能:初始化信号量   
参数:sem:初始化的信号量对象
    pshared:信号量共享的范围(0: 线程间使用   非0:1进程间使用)
    value:信号量初值
返回值:成功 0
       失败 -1

int  sem_wait(sem_t *sem)  
功能:申请资源  P操作 
参数:sem:信号量对象
返回值:成功 0
       失败 -1
注:此函数执行过程,当信号量的值大于0时,表示有资源可以用,则继续执行,同时对信号量减1;当信号量的值等于0时,表示没有资源可以使用,函数阻塞

int  sem_post(sem_t *sem)   
功能:释放资源  V操作      
参数:sem:信号量对象
返回值:成功 0
      失败 -1
注:释放一次信号量的值加1,函数不阻塞
练习:用信号量实现输入输出quit结束
#include <stdio.h>
#include <pthread.h>
#include <string.h>
#include <semaphore.h>

char s[32];
sem_t sem1; //信号量对象
sem_t sem2;

void *handler_thread(void *arg)
{
    while (1)
    {

        //申请资源 sem1
        sem_wait(&sem1);
        if (strcmp(s, "quit") == 0)
            break;
        printf("%s\n", s);
        //释放资源sem2
        sem_post(&sem2);
    }
    return NULL;
}

int main(int argc, char const *argv[])
{
    pthread_t tid;
    //初始化信号量
    if (sem_init(&sem1, 0, 0) != 0)
    {
        perror("sem_init err");
        return -1;
    }

    if (sem_init(&sem2, 0, 1) != 0)
    {
        perror("sem_init err");
        return -1;
    }

    if (pthread_create(&tid, NULL, handler_thread, NULL) != 0)
    {
        perror("err");
        return -1;
    }

    while (1)
    {
        //申请资源sem2
        sem_wait(&sem2);
        scanf("%s", s);
        //释放资源sem1
        sem_post(&sem1);
        if (strcmp(s, "quit") == 0)
            break;
    }
}

4.互斥

4.1 概念

互斥:多个线程在访问临界资源时,同一时间只能一个线程访问

临界资源:一次仅允许一个线所使用的资源

临界区:指的是一个访问共享资源的程序片段

互斥锁(mutex):通过互斥锁可以实现互斥机制,主要用来保护临界资源,每个临界资源都由一个互斥锁来保护,线程必须先获得互斥锁才能访问临界资源,访问完资源后释放该锁。如果无法获得锁,线程会阻塞直到获得锁为止。

pthread_mutex_init

pthread_mutex_lock

pthread_mutex_unlock

4.2 函数接口

int  pthread_mutex_init(pthread_mutex_t  *mutex, pthread_mutexattr_t *attr)  
功能:初始化互斥锁  
参数:mutex:互斥锁
    attr:  互斥锁属性  //  NULL表示缺省属性
返回值:成功 0
      失败 -1
      
int  pthread_mutex_lock(pthread_mutex_t *mutex)   
功能:申请互斥锁     
参数:mutex:互斥锁
返回值:成功 0
      失败 -1
注:和pthread_mutex_trylock区别:pthread_mutex_lock是阻塞的;pthread_mutex_trylock不阻塞,如果申请不到锁会立刻返回

int  pthread_mutex_unlock(pthread_mutex_t *mutex)   
功能:释放互斥锁     
参数:mutex:互斥锁
返回值:成功 0
      失败 -1
      
int  pthread_mutex_destroy(pthread_mutex_t  *mutex)  
功能:销毁互斥锁     
参数:mutex:互斥锁
例如:打印倒置数组功能
#include <stdio.h>
#include <pthread.h>
#include <unistd.h>

int a[10] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9};
pthread_mutex_t lock;

void *handler_swap(void *arg)
{
    while (1)
    {
        pthread_mutex_lock(&lock);  //上锁
        for (int i = 0; i < 5; i++)
        {
            int t = a[i];
            a[i] = a[9 - i];
            a[9 - i] = t;
        }
        pthread_mutex_unlock(&lock); //解锁
    }
    return NULL;
}

void *handler_print(void *arg)
{
    while (1)
    {
        pthread_mutex_lock(&lock); //上锁
        for (int i = 0; i < 10; i++)
            printf("%d ", a[i]);
        printf("\n");
        pthread_mutex_unlock(&lock); //解锁
        sleep(1); //锁里面减少耗时大的操作
    }
    return NULL;
}

int main(int argc, char const *argv[])
{
    pthread_t tid1, tid2;

    //初始化互斥锁
    if (pthread_mutex_init(&lock, NULL) != 0)
    {
        perror("lock err");
        return -1;
    }

    if (pthread_create(&tid1, NULL, handler_swap, NULL) != 0)
    {
        perror("err");
        return -1;
    }

    if (pthread_create(&tid2, NULL, handler_print, NULL) != 0)
    {
        perror("err");
        return -1;
    }

    pthread_join(tid1, NULL); //为了让整个进程不要结束
    pthread_join(tid2, NULL);

    return 0;
}

补充:死锁

是指两个或两个以上的进程在执行过程中,由于竞争资源或者由于彼此通信而造成的一种阻塞的现象,若无外力作用,它们都将无法推进下去。

死锁产生的四个必要条件

1、互斥使用,即当资源被一个线程使用(占有)时,别的线程不能使用

2、不可抢占,资源请求者不能强制从资源占有者手中夺取资源,资源只能由资源占有者主动释放。

3、请求和保持,即当资源请求者在请求其他的资源的同时保持对原有资源的占有。

4、循环等待,即存在一个等待队列:P1占有P2的资源,P2占有P3的资源,P3占有P1的资源。这样就形成了一个等待环路。

注意:当上述四个条件都成立的时候,便形成死锁。当然,死锁的情况下如果打破上述任何一个条件,便可让死锁消失。

5.条件变量

条件变量(cond)用于在线程之间传递信号,以便某些线程可以等待某些条件发生。当某些条件发生时,条件变量会发出信号,使等待该条件的线程可以恢复执行。

一般和互斥锁搭配使用,实现同步机制:

pthread_cond_init(&cond,NULL); //初始化条件变量

使用前需要上锁:

pthread_mutex_lock(&lock); //上锁

判断条件

pthread_cond_wait(&cond, &lock); //阻塞等待条件产生,没有条件产生时阻塞,同时解锁,当条件产生时结束阻塞,再次上锁

//执行任务

pthread_mutex_unlock(&lock); //解锁

pthread_cond_signal(&cond); //产生条件,不阻塞

pthread_cond_destroy(&cond); //销毁条件变量

注意: 必须保证让pthread_cond_wait先执行,pthread_cond_signal再产生条件

例如:打印和转置数组实现同步
#include <stdio.h>
#include <pthread.h>
#include <unistd.h>

int a[10] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9};
pthread_mutex_t lock;
pthread_cond_t cond;
void *handler_swap(void *arg)
{
    while (1)
    {
        pthread_mutex_lock(&lock); //上锁

        pthread_cond_wait(&cond, &lock);//如果没条件产生解锁并阻塞,等条件产生后结束阻塞并上锁

        for (int i = 0; i < 5; i++)
        {
            int t = a[i];
            a[i] = a[9 - i];
            a[9 - i] = t;
        }
        pthread_mutex_unlock(&lock); //解锁
    }
    return NULL;
}

void *handler_print(void *arg)
{
    while (1)
    {
        sleep(2);
        pthread_mutex_lock(&lock); //上锁
        for (int i = 0; i < 10; i++)
            printf("%d ", a[i]);
        printf("\n");

        pthread_cond_signal(&cond); //产生条件

        pthread_mutex_unlock(&lock); //解锁
        sleep(1);                    //锁里面减少耗时大的操作
    }
    return NULL;
}

int main(int argc, char const *argv[])
{
    pthread_t tid1, tid2;

    //初始化互斥锁
    if (pthread_mutex_init(&lock, NULL) != 0)
    {
        perror("lock err");
        return -1;
    }

    //初始化条件变量
    if (pthread_cond_init(&cond, NULL) != 0)
    {
        perror("cond err");
        return -1;
    }

    if (pthread_create(&tid1, NULL, handler_swap, NULL) != 0)
    {
        perror("err");
        return -1;
    }

    if (pthread_create(&tid2, NULL, handler_print, NULL) != 0)
    {
        perror("err");
        return -1;
    }

    pthread_join(tid1, NULL); //为了让整个进程不要结束
    pthread_join(tid2, NULL);
    pthread_mutex_destroy(&lock);
    pthread_cond_destroy(&cond);

    return 0;
}

标签:return,int,接口,互斥,线程,pthread,mutex,NULL
From: https://blog.csdn.net/2301_77143270/article/details/141724933

相关文章

  • 欧洲各国家天气预报接口对接,可预报15日天气api
    接口说明地图上有的城市都可以返回天气数据,支持20余种语言。包含基本天气信息、湿度、能见度、气压、降雨概率、日出日落、月初月落、空气质量指数、主要污染物等,可按地名、IP、经纬度坐标查询。对接准备请先注册账号获取appid和appsecret,可以免费测试,测试后需要购......
  • golang使用http客户端 多个协程同时请求接口
    packagemainimport( "encoding/json" "fmt" "io" "net/http" "net/url" "sync")typeApiResponsestruct{ Codeint`json:"code"` Msgstring`json:"msg&qu......
  • Redis多线程特性
    Redis6.0版本之前是用单线程模型,6.0版本为什么使用多线程?Redis几乎不存在CPU成为性能瓶颈的情况,主要受限于内存和网络IO内存优化内存淘汰策略增加内存硬件网络IO优化Redis在处理客户端的请求时,包括获取(socket读)、解析、执行、内容返回(socket写)等都由一个顺序串......
  • t6s框架-接口测试Tlink-1-接口管理模块
    需求概览重点1:引入在线脚本编辑,类似js的脚本语言,上手很容易,参考例子就会了,语法也比较宽松,拿来即用重点2:协议模块,java能实现的协议,都可以封装后,在线脚本引用模块,开始测试接口重点2:请求参数具象化,枚举名称描述参数值含义,不在是直接与编码“123”来回拉扯,最终还是记不住,避免反复核......
  • 在实施电商API接口对接时,有哪些常见的挑战和解决方案?
    在实施电商API接口对接时,企业可能会面临一些常见的挑战,以下是这些挑战以及相应的解决方案:理解API文档:首先,需要深入理解电商平台提供的API文档,这是成功对接的前提。可以通过阅读官方文档、参与培训或社区讨论来加深理解。保护API密钥:API密钥是调用API的身份验证凭证,一旦泄露就会......
  • springboot 接口接收参数的注解介绍(@RequestParam,@PathVariable,@RequestBody 等)
    springboot接收参数的注解介绍(使用方法)在SpringBoot中,接收参数的方式主要依赖于SpringMVC提供的注解。这些注解帮助你将HTTP请求中的参数绑定到控制器(Controller)方法的参数上。以下是一些常用的接收参数的注解:1.@RequestParam用法:用于将HTTP请求参数绑定到控制器的方......
  • 服务重启了,如何保证线程池中的数据不丢失?
    大家好,我是苏三,又跟大家见面了。前言最近有位小伙伴在我的技术群里,问了我一个问题:服务down机了,线程池中如何保证不丢失数据?这个问题挺有意思的,今天通过这篇文章,拿出来跟大家一起探讨一下。1什么是线程池?之前没有线程池的时候,我们在代码中,创建一个线程有两种方式:继承Thread......
  • API接口对接电商平台好在哪?
    在数字化商业的浪潮中,电商平台的效率和智能化水平成为了企业成功的关键。电商API接口作为连接不同系统和应用的桥梁,提供了一种高效、灵活的解决方案。本文将探讨使用电商API接口对接电商平台的优势。一、自动化的力量电商API接口允许自动化执行一系列任务,从订单处理到库存管理,无......
  • API接口对接电商平台好在哪?
    在数字化商业的浪潮中,电商平台的效率和智能化水平成为了企业成功的关键。电商API接口作为连接不同系统和应用的桥梁,提供了一种高效、灵活的解决方案。本文将探讨使用电商API接口对接电商平台的优势。一、自动化的力量电商API接口允许自动化执行一系列任务,从订单处理到库存管理,无需......
  • Java人证合一接口原理、身份证识别、人工智能
    人脸识别,是基于人的脸部特征信息进行身份识别的一种生物识别技术。用摄像机或摄像头采集含有人脸的图像或视频流,并自动在图像中检测和跟踪人脸,进而对检测到的人脸进行脸部的一系列相关技术,通常也叫做人像识别、面部识别。人证合一接口,一般是指人脸与身份证识别接口的相结......