首页 > 其他分享 >ggml 简介

ggml 简介

时间:2024-08-29 22:14:17浏览次数:13  
标签:tensor 简介 ctx result ggml size backend

ggml 是一个用 C 和 C++ 编写、专注于 Transformer 架构模型推理的机器学习库。该项目完全开源,处于活跃的开发阶段,开发社区也在不断壮大。ggml 和 PyTorch、TensorFlow 等机器学习库比较相似,但由于目前处于开发的早期阶段,一些底层设计仍在不断改进中。

相比于 llama.cppwhisper.cpp 等项目,ggml 也在一直不断广泛普及。为了实现端侧大语言模型推理,包括 ollamajanLM Studio 等很多项目内部都使用了 ggml。

相比于其它库,ggml 有以下优势:

  1. 最小化实现: 核心库独立,仅包含 5 个文件。如果你想加入 GPU 支持,你可以自行加入相关实现,这不是必选的。
  2. 编译简单: 你不需要花哨的编译工具,如果不需要 GPU,单纯 GGC 或 Clang 就可以完成编译。
  3. 轻量化: 编译好的二进制文件还不到 1MB,和 PyTorch (需要几百 MB) 对比实在是够小了。
  4. 兼容性好: 支持各类硬件,包括 x86_64、ARM、Apple Silicon、CUDA 等等。
  5. 支持张量的量化: 张量可以被量化,以此节省内存,有些时候甚至还提升了性能。
  6. 内存使用高效到了极致: 存储张量和执行计算的开销是最小化的。

当然,目前 ggml 还存在一些缺点。如果你选择 ggml 进行开发,这些方面你需要了解 (后续可能会改进):

  • 并非任何张量操作都可以在你期望的后端上执行。比如有些 CPU 上可以跑的操作,可能在 CUDA 上还不支持。
  • 使用 ggml 开发可能没那么简单直接,因为这需要一些比较深入的底层编程知识。
  • 该项目仍在活跃开发中,所以有可能会出现比较大的改动。

本文将带你入门 ggml 开发。文中不会涉及诸如使用 llama.cpp 进行 LLM 推理等的高级项目。相反,我们将着重介绍 ggml 的核心概念和基本用法,为想要使用 ggml 的开发者们后续学习高级开发打好基础。

开始学习

我们先从编译开始。简单起见,我们以在 Ubuntu 上编译 ggml 作为示例。当然 ggml 支持在各类平台上编译 (包括 Windows、macOS、BSD 等)。指令如下:

# Start by installing build dependencies
# "gdb" is optional, but is recommended
sudo apt install build-essential cmake git gdb

# Then, clone the repository
git clone https://github.com/ggerganov/ggml.git
cd ggml

# Try compiling one of the examples
cmake -B build
cmake --build build --config Release --target simple-ctx

# Run the example
./build/bin/simple-ctx

期望输出:

mul mat (4 x 3) (transposed result):
[ 60.00 55.00 50.00 110.00
 90.00 54.00 54.00 126.00
 42.00 29.00 28.00 64.00 ]

看到期望输出没问题,我们就继续。

术语和概念

首先我们学习一些 ggml 的核心概念。如果你熟悉 PyTorch 或 TensorFlow,这可能对你来说有比较大的跨度。但由于 ggml 是一个 低层 的库,理解这些概念能让你更大幅度地掌控性能。

  • ggml_context: 一个装载各类对象 (如张量、计算图、其他数据) 的“容器”。
  • ggml_cgraph: 计算图的表示,可以理解为将要传给后端的“计算执行顺序”。
  • ggml_backend: 执行计算图的接口,有很多种类型: CPU (默认) 、CUDA、Metal (Apple Silicon) 、Vulkan、RPC 等等。
  • ggml_backend_buffer_type: 表示一种缓存,可以理解为连接到每个 ggml_backend 的一个“内存分配器”。比如你要在 GPU 上执行计算,那你就需要通过一个buffer_type (通常缩写为 buft ) 去在 GPU 上分配内存。
  • ggml_backend_buffer: 表示一个通过 buffer_type 分配的缓存。需要注意的是,一个缓存可以存储多个张量数据。
  • ggml_gallocr: 表示一个给计算图分配内存的分配器,可以给计算图中的张量进行高效的内存分配。
  • ggml_backend_sched: 一个调度器,使得多种后端可以并发使用,在处理大模型或多 GPU 推理时,实现跨硬件平台地分配计算任务 (如 CPU 加 GPU 混合计算)。该调度器还能自动将 GPU 不支持的算子转移到 CPU 上,来确保最优的资源利用和兼容性。

简单示例

这里的简单示例将复现第一节最后一行指令代码中的示例程序。我们首先创建两个矩阵,然后相乘得到结果。如果使用 PyTorch,代码可能长这样:

import torch

# Create two matrices
matrix1 = torch.tensor([
  [2, 8],
  [5, 1],
  [4, 2],
  [8, 6],
])
matrix2 = torch.tensor([
  [10, 5],
  [9, 9],
  [5, 4],
])

# Perform matrix multiplication
result = torch.matmul(matrix1, matrix2.T)
print(result.T)

使用 ggml,则需要根据以下步骤来:

  1. 分配一个 ggml_context 来存储张量数据
  2. 分配张量并赋值
  3. 为矩阵乘法运算创建一个 ggml_cgraph
  4. 执行计算
  5. 获取计算结果
  6. 释放内存并退出

请注意: 本示例中,我们直接在 ggml_context 里分配了张量的具体数据。但实际上,内存应该被分配成一个设备端的缓存,我们将在下一部分介绍。

我们先创建一个新文件夹 examples/demo ,然后执行以下命令创建 C 文件和 CMake 文件。

cd ggml # make sure you're in the project root

# create C source and CMakeLists file
touch examples/demo/demo.c
touch examples/demo/CMakeLists.txt

本示例的代码是基于 simple-ctx.cpp 的。

编辑 examples/demo/demo.c ,写入以下代码:

#include "ggml.h"
#include <string.h>
#include <stdio.h>

int main(void) {
    // initialize data of matrices to perform matrix multiplication
    const int rows_A = 4, cols_A = 2;
    float matrix_A[rows_A * cols_A] = {
        2, 8,
        5, 1,
        4, 2,
        8, 6
    };
    const int rows_B = 3, cols_B = 2;
    float matrix_B[rows_B * cols_B] = {
        10, 5,
        9, 9,
        5, 4
    };

    // 1. Allocate `ggml_context` to store tensor data
    // Calculate the size needed to allocate
    size_t ctx_size = 0;
    ctx_size += rows_A * cols_A * ggml_type_size(GGML_TYPE_F32); // tensor a
    ctx_size += rows_B * cols_B * ggml_type_size(GGML_TYPE_F32); // tensor b
    ctx_size += rows_A * rows_B * ggml_type_size(GGML_TYPE_F32); // result
    ctx_size += 3 * ggml_tensor_overhead(); // metadata for 3 tensors
    ctx_size += ggml_graph_overhead(); // compute graph
    ctx_size += 1024; // some overhead (exact calculation omitted for simplicity)

    // Allocate `ggml_context` to store tensor data
    struct ggml_init_params params = {
        /*.mem_size =*/ ctx_size,
        /*.mem_buffer =*/ NULL,
        /*.no_alloc =*/ false,
    };
    struct ggml_context * ctx = ggml_init(params);

    // 2. Create tensors and set data
    struct ggml_tensor * tensor_a = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, cols_A, rows_A);
    struct ggml_tensor * tensor_b = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, cols_B, rows_B);
    memcpy(tensor_a->data, matrix_A, ggml_nbytes(tensor_a));
    memcpy(tensor_b->data, matrix_B, ggml_nbytes(tensor_b));


    // 3. Create a `ggml_cgraph` for mul_mat operation
    struct ggml_cgraph * gf = ggml_new_graph(ctx);

    // result = a*b^T
    // Pay attention: ggml_mul_mat(A, B) ==> B will be transposed internally
    // the result is transposed
    struct ggml_tensor * result = ggml_mul_mat(ctx, tensor_a, tensor_b);

    // Mark the "result" tensor to be computed
    ggml_build_forward_expand(gf, result);

    // 4. Run the computation
    int n_threads = 1; // Optional: number of threads to perform some operations with multi-threading
    ggml_graph_compute_with_ctx(ctx, gf, n_threads);

    // 5. Retrieve results (output tensors)
    float * result_data = (float *) result->data;
    printf("mul mat (%d x %d) (transposed result):\n[", (int) result->ne[0], (int) result->ne[1]);
    for (int j = 0; j < result->ne[1]/* rows */; j++) {
        if (j > 0) {
            printf("\n");
        }

        for (int i = 0; i < result->ne[0]/* cols */; i++) {
            printf(" %.2f", result_data[j * result->ne[0] + i]);
        }
    }
    printf(" ]\n");

    // 6. Free memory and exit
    ggml_free(ctx);
    return 0;
}

然后将以下代码写入 examples/demo/CMakeLists.txt :

set(TEST_TARGET demo)
add_executable(${TEST_TARGET} demo)
target_link_libraries(${TEST_TARGET} PRIVATE ggml)

编辑 examples/CMakeLists.txt ,在末尾加入这一行代码:

add_subdirectory(demo)

然后编译并运行:

cmake -B build
cmake --build build --config Release --target demo

# Run it
./build/bin/demo

期望的结果应该是这样:

mul mat (4 x 3) (transposed result):
[ 60.00 55.00 50.00 110.00
 90.00 54.00 54.00 126.00
 42.00 29.00 28.00 64.00 ]

使用后端的示例

“Backend” in ggml refers to an interface that can handle tensor operations. Backend can be CPU, CUDA, Vulkan, etc.

在 ggml 中,“后端”指的是一个可以处理张量操作的接口,比如 CPU、CUDA、Vulkan 等。

后端可以抽象化计算图的执行。当定义后,一个计算图就可以在相关硬件上用对应的后端实现去进行计算。注意,在这个过程中,ggml 会自动为需要的中间结果预留内存,并基于其生命周期优化内存使用。

使用后端进行计算或推理,基本步骤如下:

  1. 初始化 ggml_backend
  2. 分配 ggml_context 以保存张量的 metadata (此时还不需要直接分配张量的数据)
  3. 为张量创建 metadata (也就是形状和数据类型)
  4. 分配一个 ggml_backend_buffer 用来存储所有的张量
  5. 从内存 (RAM) 中复制张量的具体数据到后端缓存
  6. 为矩阵乘法创建一个 ggml_cgraph
  7. 创建一个 ggml_gallocr 用以分配计算图
  8. 可选: 用 ggml_backend_sched 调度计算图
  9. 运行计算图
  10. 获取结果,即计算图的输出
  11. 释放内存并退出

本示例的代码基于 simple-backend.cpp:

#include "ggml.h"
#include "ggml-alloc.h"
#include "ggml-backend.h"
#ifdef GGML_USE_CUDA
#include "ggml-cuda.h"
#endif

#include <stdlib.h>
#include <string.h>
#include <stdio.h>

int main(void) {
    // initialize data of matrices to perform matrix multiplication
    const int rows_A = 4, cols_A = 2;
    float matrix_A[rows_A * cols_A] = {
        2, 8,
        5, 1,
        4, 2,
        8, 6
    };
    const int rows_B = 3, cols_B = 2;
    float matrix_B[rows_B * cols_B] = {
        10, 5,
        9, 9,
        5, 4
    };

    // 1. Initialize backend
    ggml_backend_t backend = NULL;
#ifdef GGML_USE_CUDA
    fprintf(stderr, "%s: using CUDA backend\n", __func__);
    backend = ggml_backend_cuda_init(0); // init device 0
    if (!backend) {
        fprintf(stderr, "%s: ggml_backend_cuda_init() failed\n", __func__);
    }
#endif
    // if there aren't GPU Backends fallback to CPU backend
    if (!backend) {
        backend = ggml_backend_cpu_init();
    }

    // Calculate the size needed to allocate
    size_t ctx_size = 0;
    ctx_size += 2 * ggml_tensor_overhead(); // tensors
    // no need to allocate anything else!

    // 2. Allocate `ggml_context` to store tensor data
    struct ggml_init_params params = {
        /*.mem_size =*/ ctx_size,
        /*.mem_buffer =*/ NULL,
        /*.no_alloc =*/ true, // the tensors will be allocated later by ggml_backend_alloc_ctx_tensors()
    };
    struct ggml_context * ctx = ggml_init(params);

    // Create tensors metadata (only there shapes and data type)
    struct ggml_tensor * tensor_a = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, cols_A, rows_A);
    struct ggml_tensor * tensor_b = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, cols_B, rows_B);

    // 4. Allocate a `ggml_backend_buffer` to store all tensors
    ggml_backend_buffer_t buffer = ggml_backend_alloc_ctx_tensors(ctx, backend);

    // 5. Copy tensor data from main memory (RAM) to backend buffer
    ggml_backend_tensor_set(tensor_a, matrix_A, 0, ggml_nbytes(tensor_a));
    ggml_backend_tensor_set(tensor_b, matrix_B, 0, ggml_nbytes(tensor_b));

    // 6. Create a `ggml_cgraph` for mul_mat operation
    struct ggml_cgraph * gf = NULL;
    struct ggml_context * ctx_cgraph = NULL;
    {
        // create a temporally context to build the graph
        struct ggml_init_params params0 = {
            /*.mem_size =*/ ggml_tensor_overhead()*GGML_DEFAULT_GRAPH_SIZE + ggml_graph_overhead(),
            /*.mem_buffer =*/ NULL,
            /*.no_alloc =*/ true, // the tensors will be allocated later by ggml_gallocr_alloc_graph()
        };
        ctx_cgraph = ggml_init(params0);
        gf = ggml_new_graph(ctx_cgraph);

        // result = a*b^T
        // Pay attention: ggml_mul_mat(A, B) ==> B will be transposed internally
        // the result is transposed
        struct ggml_tensor * result0 = ggml_mul_mat(ctx_cgraph, tensor_a, tensor_b);

        // Add "result" tensor and all of its dependencies to the cgraph
        ggml_build_forward_expand(gf, result0);
    }

    // 7. Create a `ggml_gallocr` for cgraph computation
    ggml_gallocr_t allocr = ggml_gallocr_new(ggml_backend_get_default_buffer_type(backend));
    ggml_gallocr_alloc_graph(allocr, gf);

    // (we skip step 8. Optionally: schedule the cgraph using `ggml_backend_sched`)

    // 9. Run the computation
    int n_threads = 1; // Optional: number of threads to perform some operations with multi-threading
    if (ggml_backend_is_cpu(backend)) {
        ggml_backend_cpu_set_n_threads(backend, n_threads);
    }
    ggml_backend_graph_compute(backend, gf);

    // 10. Retrieve results (output tensors)
    // in this example, output tensor is always the last tensor in the graph
    struct ggml_tensor * result = gf->nodes[gf->n_nodes - 1];
    float * result_data = malloc(ggml_nbytes(result));
    // because the tensor data is stored in device buffer, we need to copy it back to RAM
    ggml_backend_tensor_get(result, result_data, 0, ggml_nbytes(result));
    printf("mul mat (%d x %d) (transposed result):\n[", (int) result->ne[0], (int) result->ne[1]);
    for (int j = 0; j < result->ne[1]/* rows */; j++) {
        if (j > 0) {
            printf("\n");
        }

        for (int i = 0; i < result->ne[0]/* cols */; i++) {
            printf(" %.2f", result_data[j * result->ne[0] + i]);
        }
    }
    printf(" ]\n");
    free(result_data);

    // 11. Free memory and exit
    ggml_free(ctx_cgraph);
    ggml_gallocr_free(allocr);
    ggml_free(ctx);
    ggml_backend_buffer_free(buffer);
    ggml_backend_free(backend);
    return 0;
}

编译并运行:

cmake -B build
cmake --build build --config Release --target demo

# Run it
./build/bin/demo

期望结果应该和上面的例子相同:

mul mat (4 x 3) (transposed result):
[ 60.00 55.00 50.00 110.00
 90.00 54.00 54.00 126.00
 42.00 29.00 28.00 64.00 ]

打印计算图

ggml_cgraph 代表了计算图,它定义了后端执行计算的顺序。打印计算图是一个非常有用的 debug 工具,尤其是模型复杂时。

可以使用 ggml_graph_print 去打印计算图:

...

// Mark the "result" tensor to be computed
ggml_build_forward_expand(gf, result0);

// Print the cgraph
ggml_graph_print(gf);

运行程序:

=== GRAPH ===
n_nodes = 1
 - 0: [     4, 3, 1] MUL_MAT
n_leafs = 2
 - 0: [     2, 4] NONE leaf_0
 - 1: [     2, 3] NONE leaf_1
========================================

此外,你还可以把计算图打印成 graphviz 的 dot 文件格式:

ggml_graph_dump_dot(gf, NULL, "debug.dot");

然后使用 dot 命令或使用这个 网站debug.dot 文件渲染成图片:

ggml-debug

总结

本文介绍了 ggml,涵盖基本概念、简单示例、后端示例。除了这些基础知识,ggml 还有很多有待我们学习。

接下来我们还会推出多篇文章,涵盖更多 ggml 的内容,包括 GGUF 格式模型、模型量化,以及多个后端如何协调配合。此外,你还可以参考 ggml 示例文件夹 学习更多高级用法和示例程序。请持续关注我们 ggml 的相关内容。


英文原文: https://hf.co/blog/introduction-to-ggml

原文作者: Xuan Son NGUYEN, Georgi Gerganov, slaren

译者: hugging-hoi2022

标签:tensor,简介,ctx,result,ggml,size,backend
From: https://www.cnblogs.com/huggingface/p/18387636

相关文章

  • 电路基础 ---- 二极管简介与分类
    1二极管基础知识储备1.1半导体导电性能介于导体与绝缘体之间的材料称为半导体,常见半导体材料有硅、锗等1.1.1特性掺杂性:向纯净半导体中掺入少量某些物质,半导体导电性大大增强热敏性:温度上升,导电性增强光敏性:光线照射半导体,导电性显著增强1.1.2类型本征半导体:纯净......
  • PCIe学习笔记(一)-------1.2 PCIe总线简介
    1,PCIe概览PCIe是第三代外围设备总线,英文缩写为PCIe或者PCIExpress。PCIe是点对点,全双工的差分传输信号总线。点对点互连表示链路上的电气负载有限,从而使发送和接收频率可扩展到更高。PCIe目前成熟的版本有GEN1,GEN2,GEN3,GEN4和GEN5,每一代相较上一代传输速率和传输带宽都有了很大幅......
  • keepalived简介
    一、keepalived概述官方网站:https://www.keepalived.org/keepalived:vrrp协议:virtualrouterredundancyprotocolvrrp是一种容错协议,它保证当lvs调度器MASTER出现故障时,由另一台lvs调度器BACKUP来代替出现故障的lvs调度器进行工作,从而保持提供服务的连续性和可靠性......
  • 【图像去噪(Image Denoising)】关于【图像去噪】专栏的相关说明,包含适配人群、专栏简介
    文章目录前言适配人群专栏简介专栏亮点阅读方法定价理由品质承诺关于更新环境配置去噪概述文章目录资料汇总(持续更新中。。。)问题汇总(持续更新中。。。)前言先思考几个问题:你是否在全网苦寻【图像去噪(ImageDenoising)】的相关资料?你的目标是否是看懂【图像去噪(Image......
  • CISP保姆级全面简介
    问:CISP证书是什么?   答:CISP是指注册信息安全专业人员证书,属于认证类考试。信息安全人才的培养是发展和建设我国信息安全保障体系常用的基础和先决条件。CISP认证是对信息安全人员资质的较高认可。   问:CISP证书发证机构是哪家?   答:CISP发证单位介绍:中国信息......
  • Apache Kafka 简介、使用场景及特点
    ApacheKafka简介、使用场景及特点1.什么是ApacheKafka?ApacheKafka是一种开源的分布式流处理平台,最初由LinkedIn开发,并在2011年成为Apache软件基金会的顶级项目。Kafka专为高吞吐量、低延迟的实时数据处理设计,广泛应用于各种数据流处理场景。Kafka的核心组......
  • 新出的三款NAS软件简介
    一,鲁大师新推出的AiNAS软件是一款结合了本地AI部署和在线NAS功能的复合产品。AiNAS内置了70亿参数的本地GPT大语言模型,可以深度理解本地文档并构建知识库,同时还支持知识分享功能。用户无需额外购买硬件,通过简单的一键安装即可使用,AiNAS还提供了文件管理、相册、影视套件以及......
  • 链表简介c++
    定义:链表是一种数据结构,其中元素(也称为节点)不是连续存储的。每个节点包含数据部分和一个指向下一个节点的指针。类型:在C++中,有两种主要类型的链表:单链表(每个节点只有一个指针指向下一个节点)和双向链表(每个节点有两个指针,一个指向前一个节点,另一个指向后一个节点)。结构......
  • WebGL入门(014):WebGLActiveInfo 简介、使用方法、示例代码
    还是大剑师兰特:曾是美国某知名大学计算机专业研究生,现为航空航海领域高级前端工程师;CSDN知名博主,GIS领域优质创作者,深耕openlayers、leaflet、mapbox、cesium,canvas,webgl,echarts等技术开发,欢迎加底部微信(gis-dajianshi),一起交流。No.内容链接1Openlayers【入门教程】-......
  • JavaScript简介
    一、JavaScript简介1.什么是JavaScript?JavaScript简称为JS,由网景公司开发的客户端脚本语言,不需要编译,可以直接运行Web前端三层:结构层 HTML 定义页面的结构样式层 CSS 定义页面的样式行为层 JavaScript 用来实现交互,提升用户体验2.JavaScript作用在客户端动......