首页 > 其他分享 >手搓平衡搜索树-红黑树 平衡修正 图文详解 (万字长文)

手搓平衡搜索树-红黑树 平衡修正 图文详解 (万字长文)

时间:2024-08-26 22:52:39浏览次数:7  
标签:结点 路径 修正 插入 kv 红黑树 字长 平衡

目录

红黑树

简述

红黑树,是一种二叉搜索树,但在每个结点上增加一个存储位表示结点的颜色,可以是Red或Black。 通过对任何一条从根到叶子的路径上各个结点着色方式的限制,红黑树确保没有一条路径会比其他路径长出俩倍,因而是接近平衡的。

性质/规则

详细说明:红黑树_百度百科 (baidu.com)

主要规则:

为了方便理解和记忆,先将红黑树规则分解,以下三点是我认为理解红黑树是最主要的规则.加粗的是关键字,先记住这些关键字,去学习红黑树时会容易理解许多.

  • 根节点是黑色.
  • 任意两个相邻结点不能同时为红.即红色结点的孩子是黑色的.(不能出现连续的红色结点)
  • 任意结点到其可到达的叶节点间,均包含相同数量的黑色结点.(每条路径上都有相同的黑色结点)

其他规则:

默认规则:每个结点不是红色就是黑色

补充:叶结点都是黑色,且不存数据,也被称为NIL结点nil(计算机语言)_百度百科 (baidu.com)

转载:通过将红黑树的所有叶子节点都替换为NIL节点,可以保证红黑树的每个节点都至少有一个子节点,从而简化了操作的实现。NIL节点的存在有助于维护红黑树的结构和性质,特别是在处理边界情况时,通过判断节点的子节点是否为NIL节点来避免特殊处理叶子节点的情况.

推导性质:

推导规则是红黑树规则加二叉树性质推导的一些规则,在后面用来证明和理解红黑树的一些操作.

  1. 推导性质1:
  • 一条路径的所有可能情况中,最长路径节点个数不会超过最短路径的两倍(连续的红节点能够使最长路径超过最短路径的两倍)

    从根到叶子的最长的可能路径不多于最短的可能路径的两倍长。

  • 红色结点如果有两个孩子,则都是黑色.(可能有0,1,2个黑孩子)

  • 修改祖先结点颜色变化不会影响所有分支路径的黑色结点的平衡(修正常用)

  1. 推导性质2:
  • 最短路径:全部是黑色结点

  • 最长路径:红黑相间(一黑一红,最后一个非NIL结点可以是红)

  • 去掉红色结点的红黑树接近一棵满二叉树.(直接去掉红色结点可能就不是二叉树了,hold不住)

  • 当只有一个根节点时(黑),第二个结点只能是红色(满足黑结点数量相同),被迫只能插入红色结点.

  • 新增结点默认为红色,红色规则比黑色宽松

  1. 推导性质3:

设黑色结点有N个

  • 最短路径长度为:$log_2(N) $

  • 最长路径长度为:$2log_2(N)$

  • 一棵红黑树的所有结点数量在[N,2N]之间.(全黑为N,红黑全满为2N)

  • 性能上,假设有10亿个结点,AVL树最多查找30次, RB树最多查找60次

注:文章仅以理解红黑树的主要功能(插入修正)实现为主,没有实现对NIL结点处理等其他情况,不是严谨的红黑树实现.

红黑树的基本实现

基本功能和AVL树是几乎一样的.以下就简要描述了

struct RBTreeNode

template<class K, class V>
struct RBTreeNode {
    //三叉链
    RBTreeNode* _left;
    RBTreeNode* _right;
    RBTreeNode* _parent;

    std::pair<K,V> _kv;
    Color _col;
    
    RBTreeNode(const decltype(_kv)& kv)
    : _left(nullptr)
    ,_right(nullptr)
    ,_parent(nullptr)
    ,_kv(kv)
    ,_col(Color::RED) //默认为红,因为规则最宽松
    {}
};

class RBTree

enum class Color { RED, BLACK };

template<class K,class V>
class RBTree {
public:
	 bool Insert(const std::pair<K,V>& kv);
private:
    using Node = RBTreeNode<K,V>;
    Node* _root;
};

红黑树的插入

插入的重点和AVL树一样,在于插入修正

    bool Insert(const std::pair<K,V>& kv) {
        if (_root == nullptr) {
            _root = new Node(kv);
            _root->_col = Color::BLACK;
            return true;
        }

        Node* cur = _root;
        Node* parent = _root;
        while (cur) {
            if (kv.first > cur->_kv.first) {
                parent = cur;
                cur = cur -> _right;
            }
            else if (kv.first < cur->_kv.first) {
                parent = cur;
                cur = cur -> _left;
            }
            else {
                //存在相同的
                return false;
            }
        } //while比较过程 [end]

        //没找到,新增
        cur = new Node(kv); //cur地址改变,只能使用kv进行比较(始终使用kv就好了)
        //维护三叉链
        if (cur->_kv->first > parent->_kv.first) {
            parent->_right = cur;
        }
        else {
            parent->_left = cur;
        }
    
        //检查和调整红黑树
        FixInsert();

    }

红黑树插入修正前言

在实现红黑树插入前,我们知道红黑树插入新结点后,一定会出现不满足红黑树规则的情况,因此我们先将需要,红黑树的修正操作主要通过旋转和变色来实现.

什么时候需要变色:

只有父亲是红色时,才需要变色,且必须变色.(红节点不相邻规则)

变色的基础:

插入红节点规则最宽松,不需要调整其他路径,因此插入结点不可变色,所以只能将父亲变成黑色,后面就围绕父亲变黑后,爷爷结点和叔叔结点如何变色进行处理.

一句话:父亲是红色时,必须要变色,且变色的是父亲.(扩展说法:都是父爷颜色交换.后文详细解释)

为什么需要旋转与变色

变色:

根据二叉树规律:满二叉树总是一个结点两个孩子,总是1:2的关系.
通过这个关系可以实现数量对调操作,即1个黑色父:2个红色孩子 可以转换成 1个红色父:2个黑色孩子

image-20240826172745480

这样变色对父结点的所有分支路径颜色影响比较小,不容易破坏红黑树黑结点数量相同规则(简称).

旋转

首先,1个黑结点,两个红节点.观察发现,只要一定的旋转操作即可平衡.

image-20240826173044634

红黑树在某些情况下,直接变色操作难以满足规则,或者较为复杂;而通过一定地旋转操作后,会更加简单,因此红黑树需要循环.具体情况请看下文.

;另外,具体的旋转操作我在另一篇博客详细描述了,本篇就不再描述太多了.AVL树

需要修正的所有情况

红黑树需要修正的所有情况都是从下面这棵抽象树衍生出的.

image-20240826182022937

只有理解红黑树基本的修正情况才能够实现红黑树.下面将循序渐进讲解:

先认识最简单的情况

最简单的情况可以认为是最远的几个结点之间的修正,也是插入后第一次修正,最简单情况也是最容易理解的.红黑树修正和AVL树的一样,情况很多很复杂,搞定简单的再去看抽象情况好理解很多.

1. 叔叔是红色结点

描述:叔叔和父亲都是红色,且叔叔和父亲都是非NIL结点的最远结点.

反证:如果叔叔还有子结点,那一定是黑色,即多了一个黑色结点;为了满足各路径黑结点数量相同的规则,父结点也必须要有黑色子节点,且必须要有两个,那就无法再插入新节点了,因此这种情况不可能.

  • 左左(LL型)

插入到父结点的左边

image-20240826181253215

操作:父变黑,爷变红(父爷交换颜色),叔叔变黑

image-20240826181434994

感性解释:

父子都是红,只能且必须由父亲变黑.因为多了一个黑结点,所以所在路径必须上少一个黑结点;

要少哪一个呢?肯定不能往下了,因为下面是已经处理过了(修正操作是往上迭代的),所以只能往上寻找;

因为插入前路径上的所有结点都是满足红黑树规则的,所以爷爷结点一定是黑色;又因为爷爷距离父是最近的结点,对其他结点影响最小,因此选择将爷爷结点置为红,即将父爷结点颜色交换;

爷爷颜色是红色结点后,叔叔路径则少了一个黑色结点,因此叔叔结点必须变黑.

  • 左右(LR型)

操作:父变黑,爷变红(父爷交换颜色),叔叔变黑.

image-20240826181722794

因为父和叔都是最远结点,调整过程没有子结点影响,也不需要旋转等额外操作,因此和LL型是完全相同的.

注意:

爷爷非根,在有叔叔且为红的情况下,新增结点加一轮修正后,爷爷会变红 此时如果祖爷爷也为红,需要继续修正.

也只有这种情况下才可能需要继续修正

2.没有叔叔结点

从操作上来看,没有叔叔的情况和叔叔为黑的情况是一样的.不过没有叔叔的情况是第一轮修正的状态,较为容易理解.

叔叔为黑色的情况下,黑结点数量不匹配,说明这种情况是上一次调整导致的(中间状态/不平衡状态);

没有叔叔的情况下,根据长度规则,此时已是最长路径(爷爷是最后一个非NIL黑结点),因此新增结点一定是最远结点,即插入后的第一次修正

  • 左左(LL型):爷爷右单旋(降高度),交换父爷颜色

image-20240826184249784

  1. 为什么要旋转?

​ 在叔叔为空的情况下,插入红色结点可能会违反长度规则(一条路径中最长路径不超过最短路径的两倍),

image-20240825171014847

​ (上图举例)

在上一篇AVL树中我们知道使用旋转子树可以降低高度(旋转过程在AVL树篇有详细描述,本篇不再具体描述,.同样的,红黑树在违反长度规则后也可以使用旋转来降低高度.经过验证,旋转处理可以有效解决违反长度规则问题.

  1. 如何旋转?

    LL型中,对爷爷结点进行左旋,之后爷爷结点成为父结点的左孩子,高度-1;再交换父爷结点颜色,红黑树就平衡了.

  2. 旋转下来后为什么要变色? 如何变色?

    旋转下来,父亲结点是祖先,是红色;但是爷爷是黑色,即以父结点为根的两条路径黑结点数量不平衡,一条多一个另一条少一个,这种情况下交换父爷结点颜色即可平衡.

  • 左右(LR型):父左单旋(转成LL型),爷爷右单旋(降高度),交换父爷颜色.

image-20240826184510086

3. 叔叔是黑色结点

(本身黑结点数量不匹配,说明这种情况一定是上一次调整导致的)

直接上图

image-20240826211618991

所有结构的基础衍生结构(以左为例)

在认识了简单结构后,我们对红黑树修正的基本情况有了大概的认识了.现在来分析这些结构怎么来的,下图是一个抽象结构,所有的需要修正的情况都是由下图所衍生.

image-20240826214715790

矩形▯为任意高度的子树,其中x为可能插入的位置,y是由x决定的(根据红黑树规则)。

简单情况衍生

当x为插入的结点时,

image-20240826211940998

​ (△表示一个结点,其中a,b是新结点可能插入的位置,c只能为红色或没有结点。)

  • 当c为一个红色结点时,衍生出以下情况

image-20240826212610923

显然就是在上文的简单结构,红叔叔的情况.

  • 当c为一个黑色结点时

image-20240826213106299

和上文的一样,这种情况是修正中间状态,由上一轮修正引起的

  • 当c为空时

image-20240826213428777

二级修正的情况衍生

当矩形x非插入结点,并根据

  1. 红黑树规则
  2. 和在简单情况中分析的,只有叔叔为红色结点时,才会使爷爷结点变红,进而可能影响到祖先结点

进行往下衍生一次,得到此图。

image-20240826220932973

其中c为下图i/j/k/l中任意一种情况,d下面具体分析

image-20240826212112629

在最远结点四个位置插入均会引发爷爷结点变红。以插入最左位置为例

image-20240826221608433

  • d为红时

image-20240826223043192

  • d为黑时,有两种基本情况

image-20240826223510388

其中a可能为i/j/k/l四种,b和c只能为空或者一个红色结点

  • 当d为空时,在简单情况分析中得知调整方法和d为黑是一样的,可以复用,就不再分析了。

总结:

往后还有3级,4级...等,我们知道2级怎么来的就足够了,套用1级的方法,加上迭代修正,就能完成最终平衡.

插入修正代码实现

标签:结点,路径,修正,插入,kv,红黑树,字长,平衡
From: https://www.cnblogs.com/DSCL-ing/p/18377203

相关文章

  • 数模国赛冲刺 | 数据预处理方法合集(特征工程、数据降维、数据划分、数据平衡)
    ​数据预处理方法合集(特征工程、数据降维、数据划分、数据平衡)本文继续介绍数据预处理中的特征工程、数据降维、数据划分、数据平衡的内容,接下来我们将详细地介绍具体的方法,文末可获得预处理方法合集PDF!目录特征工程特征选择(FeatureSelection)特征提取数据降维线性降......
  • 红黑树原理详解
    文章目录红黑树原理详解一、引言二、红黑树的基本性质1、基本性质2、红黑树的效率三、红黑树的操作1、插入操作1.1、插入节点1.2、调整颜色和结构1.3、修复2、删除操作2.1、删除节点2.2、调整颜色和结构2.3、修复四、总结红黑树原理详解一、引言红黑树(Red-Blac......
  • 最全!万字长文总结opencv-python常用函数(一)
    文章目录一,简介:二,图像的基础操作:2.1,图像的读取显示与保存2.1.1图像的读取cv2.imread:2.1.2图像的显示cv2.imshow与等待cv2.waitKey:2.1.3图像保存cv2.imwrite:2.2,图像属性获取:2.3,图像裁剪cv2.selectROI:2.4,图像通道的拆分cv2.split:2.5,图像通道的合并cv2.merge:三,图像的数值......
  • Android Content Provider最全面试题及参考答案(8万字长文)
    什么是ContentProvider?ContentProvider是Android系统中用于在不同应用程序之间共享数据的一种机制。它提供了一种统一的接口,使得不同的应用可以以标准的方式访问和操作特定类型的数据。ContentProvider就像是一个数据仓库的管理员,它负责管理数据的存储、检索、更新......
  • 如何实现一棵红黑树
    目录1.什么是红黑树2.红黑树的实现2.1红黑树的插入新插入的结点应该是什么颜色的呢?插入情况的分析​编辑插入代码如下所示2.2红黑树的查找2.2检测红黑树1.什么是红黑树?红黑树是一棵接近平衡的二叉搜索树。由于AVL树在频繁大量改变数据的情况下,需要进行很多的旋转......
  • 代码随想录第15天,110.平衡二叉树,257. 二叉树的所有路径, 404.左叶子之和, 222.完全二叉
    110.平衡二叉树//平衡二叉树,理解稍微有点难度#include<iostream>#include<algorithm>//Forstd::absandstd::maxfunctionsstructTreeNode{intval;TreeNode*left;TreeNode*right;TreeNode(intx):val(x),left(nullptr),right(nullptr......
  • 如何建立一种检测漏油的不平衡分类模型
    如何建立一种检测漏油的不平衡分类模型许多不平衡的分类任务需要一个熟练的模型来预测清晰的类别标签,其中两个类别同等重要。不平衡分类问题的一个例子是检测卫星图像中的漏油或浮油,其中需要一个类别标签,并且两个类别同等重要。检测漏油需要动员昂贵的响应,而错过事件同样......
  • 程序员的成长之路:平衡编码工作与持续学习
    目录一、引言1.1程序员面临的挑战与机遇1.2日常工作与提升自我学习的矛盾二、高效编码习惯与时间管理技巧2.1模块化设计与代码复用2.2代码质量管理与技术债务的减少2.3使用合适的工具和技术栈2.4时间管理技巧2.4.1番茄工作法2.4.2时间块规划与任务优先级2.......
  • 问题回答:程序员如何平衡日常编码工作与提升式学习?
    程序员如何平衡日常编码工作与提升式学习?在快速迭代的编程世界中,程序员们不仅需要高效完成日常编码任务,还需不断学习新技术、深化专业知识,以应对日益复杂的项目挑战。然而,如何在繁忙琐碎的编码工作与个人成长之间找到平衡,是不少程序员都面临的一个难题。是沉浸在日复一日的工......
  • 程序员如何平衡日常编码工作与提升式学习?
    在快速迭代的编程世界中,程序员们不仅需要高效完成日常编码任务,还需不断学习新技术、深化专业知识,以应对日益复杂的项目挑战。然而,如何在繁忙琐碎的编码工作与个人成长之间找到平衡,是不少程序员都面临的一个难题。是沉浸在日复一日的工作代码海洋中,还是抽出时间深入探索、自主学......