首页 > 其他分享 >题解:SP22382 ETFD - Euler Totient Function Depth

题解:SP22382 ETFD - Euler Totient Function Depth

时间:2024-08-25 19:48:06浏览次数:11  
标签:Function phi ETFD int 题解 sum chh isprime include

题目链接:

link,点击这里喵。

前置知识:

【模板】线性筛素数欧拉函数,点击这里喵。

题意简述:

给定整数 $l,r,k$,求出 $[l,r]$ 中有多少个整数不断对自己取欧拉函数刚好 $k$ 次结果为 $1$。

思路:

看眼数据范围,$10^{10}$ 的量级显然不容我们每次暴力,故考虑预处理 $\varphi(i),can(i,k),sum(i,k)$。定义如其名。

做法:

1. 预处理 $\varphi(i)$:

这里采用线性筛,这里在注释中简要说明,证明过程详见:筛法求欧拉函数

void get_phi(const int n){
	bool isprime[n];
	memset(isprime,1,sizeof(isprime));
	phi[1]=1;isprime[0]=isprime[1]=0;
	vector<int> prime;
	for(int i=2;i<n;++i){
		if(isprime[i]){phi[i]=i-1;prime.push_back(i);}      //当 i 为质数时,小于她且与之互质的显然有 (i-1) 个
		for(auto e: prime){
			if(e*i>=n){break;}
			isprime[e*i]=0;
			if(i%e==0){phi[i*e]=phi[i]*e;break;}            //当 i 中含有 e 这个质因子时,phi(i * e) = phi(i) * e
			phi[i*e]=phi[i]*phi[e];                         //当 i 中不含有 e 这个质因子时,phi(i * e) = phi(i) * (e-1)
		}
	}
}

2. 预处理 $can(i,k)$ 以及 $sum(i,k)$:

唯一要注意的点是,是恰好 $k$ 次,所以尽管 $\varphi(1)=1$,仍然不能无限套娃,这点在求 $sum(i,k)$ 时一定要注意。

sum[1][0]=can[1][0]=1;
for(int i=2;i<N;++i){
	for(int e=0;e<21;++e){
		can[i][e]=can[phi[i]][e-1];
		sum[i][e]=sum[i-1][e]+can[i][e];
	}
}

小贴士:

请万分注意 $sum(i,k)$ 的求值过程。

时间复杂度分析:

预处理 $O(kn)$,查询 $O(T)$,总体之间复杂度 $O(kn)$。

代码:

#include <stdio.h>
#include <ctype.h>
#include <algorithm>
#include <string.h>
#include <vector>
#define lnt long long
#define dnt double
#define inf 0x3f3f3f3f
using namespace std;
int xx;char ff,chh;inline int read(){
    xx=ff=0;while(!isdigit(chh)){if(chh=='-'){ff=1;}chh=getchar();}
    while(isdigit(chh)){xx=(xx<<1)+(xx<<3)+chh-'0';chh=getchar();}return ff? -xx: xx;
}
const int N=1e6+2e4;
int phi[N];
int can[N][22],sum[N][22];
void get_phi(const int);
int main(){
	get_phi(N);
	sum[1][0]=can[1][0]=1;
	for(int i=2;i<N;++i){                        //从 2 开始避免无线套娃
		for(int e=0;e<21;++e){
			can[i][e]=can[phi[i]][e-1];
			sum[i][e]=sum[i-1][e]+can[i][e];
		}
	}
	int G=read();
	while(G--){
		int l=read(),r=read(),k=read();
		printf("%d\n",sum[r][k]-sum[l-1][k]);
	}
	
    return 0;
}
void get_phi(const int n){
	bool isprime[N];
	memset(isprime,1,sizeof(isprime));
	phi[1]=1;isprime[0]=isprime[1]=0;
	vector<int> prime;
	for(int i=2;i<n;++i){
		if(isprime[i]){phi[i]=i-1;prime.push_back(i);}
		for(auto e: prime){
			if(e*i>=n){break;}
			isprime[e*i]=0;
			if(i%e==0){phi[i*e]=phi[i]*e;break;}  //线性筛减免时间复杂度的核心操作
			phi[i*e]=phi[i]*phi[e];
		}
	}
}

公式真的没有中文标点了

标签:Function,phi,ETFD,int,题解,sum,chh,isprime,include
From: https://www.cnblogs.com/dongzhenmao/p/18379408

相关文章

  • 【面试系列】大数据平台常见面试题解答
    欢迎来到我的博客,很高兴能够在这里和您见面!欢迎订阅相关专栏:工......
  • AtCoder ABC 368题解
    前言本题解部分思路来自于网络。A-Cut题目大意有\(n\)张卡片叠在一起,从上到下给出\(n\)卡片的编号,将\(k\)张卡片从牌堆底部放到顶部后,从上到下输出卡片的编号。解题思路按照题意模拟即可。code#include<bits/stdc++.h>usingnamespacestd;inta[105];intmai......
  • SP666 VOCV - Con-Junctions 题解
    注意到这个问题具有最优子结构性,考虑树上dp。记$dp[i][0/1]$表示i号节点不放灯或放灯的最小值,$s[i][0/1]$为对应的方案数。那么我们可以进行如下转移:$dp[u][0]=\sum_{u->v}dp[v][1]$$dp[u][1]=\sum_{u->v}\min(dp[v][0],dp[v][1])$在更新对应的dp数组时,我们用......
  • P9482 [NOI2023] 字符串 题解
    题目描述\(T\)组数据,给定长为\(n\)的字符串\(s\),\(q\)次询问,给定\(i,r\),求有多少个\(l\)满足:\(1\lel\ler\)。\(s[i:i+l-1]\)字典序小于\(R(s[i+l:i+2l-1])\)。数据范围\(1\leT\le5,1\len,q\le10^5,1\lei+2r-1\len\)。时间限制\(\texttt{1s}\),......
  • Triple Attack 题解
    直接暴力显然不可行。我们容易发现,变量\(T\)的增量以\(3\)为循环,一次循环会造成\(5\)的贡献,所以我们容易想到对每个\(a_i\)直接对\(5\)计算倍数和取余,然后对于余数分类讨论去增加,然后对于倍数部分统一增加即可。有些细节。Code#include<bits/stdc++.h>//#include......
  • Minimum Steiner Tree 题解
    原题,详见P10723。几乎相同,我们只需要以一个需要选择的点为根,遍历子树看看有没有出现需要选择的点,然后直接去删除即可,可以看我的博客。但是我们也可以换一种做法,用类似拓扑排序的算法。先找到所有只连一条边且没有被选择的点,然后放进队列,接着依次取出队头遍历与它相连的点,同时记......
  • [C++ Error] f0202.cpp(13): E2268 Call to undefined function 'system'
    system('pause');解决方法,修改代码:system("pause");[C++Error]f0202.cpp(13):E2268Calltoundefinedfunction'system'错误解释:这个错误表明您在C++代码中尝试调用了一个未定义的函数system。system函数是C标准库中的函数,用于执行一个字符串中给出的命令。在C++中,......
  • k8s中coredns访问连接拒绝问题解决
    问题现象1、节点访问coredns连接拒绝2、内部pod无法正常进行解析问题解决思路检查CoreDNSPod状态是否正常[root@k8s-master01~]#kubectlgetpods-nkube-system-lk8s-app=kube-dnsNAMEREADYSTATUSRESTARTSAGEcoredns-7b8d6fc5......
  • CSP-J 2023 初赛试题解析(第三部分:完善程序(1-2))
    第一题补全后完整代码:#include<iostream>#include<vector>usingnamespacestd;intfind_missing(vector<int>&nums){intleft=0,right=nums.size()-1;while(left<right){intmid=left+(right-left)/2;if(nums[mi......
  • 洛谷SCP 2024 第一轮(初赛 J 组)模拟题解析(第三部分:完善程序(1-2))
    完善程序一(补全)#include<bits/stdc++.h>usingnamespacestd;constintMAXN=100000;intn;intvis[MAXN],a[MAXN];vector<int>ans;intcheck(intk){intx=n,top=0;for(inti=0;i<=k;i++)vis[i]=0;while(x......