题目链接:
link,点击这里喵。
前置知识:
题意简述:
给定整数 $l,r,k$,求出 $[l,r]$ 中有多少个整数不断对自己取欧拉函数刚好 $k$ 次结果为 $1$。
思路:
看眼数据范围,$10^{10}$ 的量级显然不容我们每次暴力,故考虑预处理 $\varphi(i),can(i,k),sum(i,k)$。定义如其名。
做法:
1. 预处理 $\varphi(i)$:
这里采用线性筛,这里在注释中简要说明,证明过程详见:筛法求欧拉函数。
void get_phi(const int n){
bool isprime[n];
memset(isprime,1,sizeof(isprime));
phi[1]=1;isprime[0]=isprime[1]=0;
vector<int> prime;
for(int i=2;i<n;++i){
if(isprime[i]){phi[i]=i-1;prime.push_back(i);} //当 i 为质数时,小于她且与之互质的显然有 (i-1) 个
for(auto e: prime){
if(e*i>=n){break;}
isprime[e*i]=0;
if(i%e==0){phi[i*e]=phi[i]*e;break;} //当 i 中含有 e 这个质因子时,phi(i * e) = phi(i) * e
phi[i*e]=phi[i]*phi[e]; //当 i 中不含有 e 这个质因子时,phi(i * e) = phi(i) * (e-1)
}
}
}
2. 预处理 $can(i,k)$ 以及 $sum(i,k)$:
唯一要注意的点是,是恰好 $k$ 次,所以尽管 $\varphi(1)=1$,仍然不能无限套娃,这点在求 $sum(i,k)$ 时一定要注意。
sum[1][0]=can[1][0]=1;
for(int i=2;i<N;++i){
for(int e=0;e<21;++e){
can[i][e]=can[phi[i]][e-1];
sum[i][e]=sum[i-1][e]+can[i][e];
}
}
小贴士:
请万分注意 $sum(i,k)$ 的求值过程。
时间复杂度分析:
预处理 $O(kn)$,查询 $O(T)$,总体之间复杂度 $O(kn)$。
代码:
#include <stdio.h>
#include <ctype.h>
#include <algorithm>
#include <string.h>
#include <vector>
#define lnt long long
#define dnt double
#define inf 0x3f3f3f3f
using namespace std;
int xx;char ff,chh;inline int read(){
xx=ff=0;while(!isdigit(chh)){if(chh=='-'){ff=1;}chh=getchar();}
while(isdigit(chh)){xx=(xx<<1)+(xx<<3)+chh-'0';chh=getchar();}return ff? -xx: xx;
}
const int N=1e6+2e4;
int phi[N];
int can[N][22],sum[N][22];
void get_phi(const int);
int main(){
get_phi(N);
sum[1][0]=can[1][0]=1;
for(int i=2;i<N;++i){ //从 2 开始避免无线套娃
for(int e=0;e<21;++e){
can[i][e]=can[phi[i]][e-1];
sum[i][e]=sum[i-1][e]+can[i][e];
}
}
int G=read();
while(G--){
int l=read(),r=read(),k=read();
printf("%d\n",sum[r][k]-sum[l-1][k]);
}
return 0;
}
void get_phi(const int n){
bool isprime[N];
memset(isprime,1,sizeof(isprime));
phi[1]=1;isprime[0]=isprime[1]=0;
vector<int> prime;
for(int i=2;i<n;++i){
if(isprime[i]){phi[i]=i-1;prime.push_back(i);}
for(auto e: prime){
if(e*i>=n){break;}
isprime[e*i]=0;
if(i%e==0){phi[i*e]=phi[i]*e;break;} //线性筛减免时间复杂度的核心操作
phi[i*e]=phi[i]*phi[e];
}
}
}
公式真的没有中文标点了