1、手动实现前馈神经网络解决回归问题
#导入必要的包
import torch
import numpy as np
import random
from IPython import display
from matplotlib import pyplot as plt
import torch.utils.data as Data
#自定义数据---训练
num_inputs = 500
num_examples = 10000
true_w = torch.ones(500,1)*0.0056
true_b = 0.028
x_features = torch.tensor(np.random.normal(0, 1, (num_examples, num_inputs)), dtype=torch.float)
y_labels = torch.mm(x_features,true_w) + true_b
y_labels += torch.tensor(np.random.normal(0, 0.01, size=y_labels.size()), dtype=torch.float)
#训练集
trainfeatures =x_features[:7000]
trainlabels = y_labels[:7000]
print(trainfeatures.shape)
#测试集
testfeatures =x_features[7000:]
testlabels = y_labels[7000:]
print(testfeatures.shape)
torch.Size([7000, 500])
torch.Size([3000, 500])
#读取数据
batch_size = 50
# 将训练数据的特征和标签组合
dataset = Data.TensorDataset(trainfeatures, trainlabels)
train_iter = Data.DataLoader(
dataset=dataset, # torch TensorDataset format
batch_size=batch_size, # mini batch size
shuffle=True, # 是否打乱数据 (训练集一般需要进行打乱)
num_workers=0, # 多线程来读数据, 注意在Windows下需要设置为0
)
# 将测试数据的特征和标签组合
dataset = Data.TensorDataset(testfeatures, testlabels)
# 把 dataset 放入 DataLoader
test_iter = Data.DataLoader(
dataset=dataset, # torch TensorDataset format
batch_size=batch_size, # mini batch size
shuffle=True, # 是否打乱数据
num_workers=0, # 多线程来读数据, 注意在Windows下需要设置为0
)
#初始化参数
num_hiddens,num_outputs = 256,1
W1 = torch.tensor(np.random.normal(0, 0.01, (num_hiddens,num_inputs)), dtype=torch.float32)
b1 = torch.zeros(1, dtype=torch.float32)
W2 = torch.tensor(np.random.normal(0, 0.01, (num_outputs,num_hiddens)), dtype=torch.float32)
b2 = torch.zeros(1, dtype=torch.float32)
params =[W1,b1,W2,b2]
for param in params:
param.requires_grad_(requires_grad=True)
#自定义relu激活函数
def relu(x):
x = torch.max(input=x,other=torch.tensor(0.0))
return x
#定义模型
def net(X):
X = X.view((-1,num_inputs))
H = relu(torch.matmul(X,W1.t())+b1) #经过第一层(包括激活函数)
return torch.matmul(H,W2.t())+b2 #第二层
#定义最小化均方误差
loss = torch.nn.MSELoss()
#定义随机梯度下降法
def SGD(paras,lr,batch_size):
for param in params:
param.data -= lr * param.grad/batch_size
#定义模型训练函数
def train(net,train_iter,test_iter,loss,num_epochs,batch_size,params=None,lr=None,optimizer=None):
train_ls = []
test_ls = []
for epoch in range(num_epochs): # 训练模型一共需要num_epochs个迭代周期
train_l_sum, train_acc_num,n = 0.0,0.0,0
# 在每一个迭代周期中,会使用训练数据集中所有样本一次
for X, y in train_iter: # x和y分别是小批量样本的特征和标签
y_hat = net(X)
l = loss(y_hat, y.view(-1,1)) # l是有关小批量X和y的损失
#梯度清零
if optimizer is not None: #手动实现梯度清零
optimizer.zero_grad()
elif params is not None and params[0].grad is not None:
for param in params:
param.grad.data.zero_()
l.backward() # 小批量的损失对模型参数求梯度
if optimizer is None:
SGD(params,lr,batch_size)
else:
optimizer.step()
#计算每个epoch的loss
train_l_sum += l.item()*y.shape[0]
n+= y.shape[0]
test_labels = testlabels.view(-1,1)
train_ls.append(train_l_sum/n)
test_ls.append(loss(net(testfeatures),test_labels).item())
print('epoch %d, train_loss %.6f,test_loss %.6f'%(epoch+1, train_ls[epoch],test_ls[epoch]))
return train_ls,test_ls
lr = 0.01 #学习率
num_epochs = 50 #迭代次数
train_loss,test_loss = train(net,train_iter,test_iter,loss,num_epochs,batch_size,params,lr) #开始训练
#结果可视化
x = np.linspace(0,len(train_loss),len(train_loss))
plt.plot(x,train_loss,label="train_loss",linewidth=1.5)
plt.plot(x,test_loss,label="test_loss",linewidth=1.5)
plt.xlabel("epoch")
plt.ylabel("loss")
plt.legend()
plt.show()
标签:loss,torch,num,手动,前馈,神经网络,train,test,size
From: https://www.cnblogs.com/cyberbase/p/16821138.html