首页 > 其他分享 >深入浅出LLM基础:探索Embedding模型的核心原理与应用

深入浅出LLM基础:探索Embedding模型的核心原理与应用

时间:2024-08-19 11:57:12浏览次数:19  
标签:编码 LLM 模型 深入浅出 矩阵 单词 Embedding 上下文

图片

Embedding模型概览

Embeddings是自然语言处理技术中很重要的基石。它有很多种模型,从GloVe、word2vec、FastText、Bert、RoBERTa、XLNet、OpenAI ada、Google VertexAI Text Embeddings、Amazon SageMaker Text Embeddings和Cohere。每种模型都有优劣,如何去分析这些Embeddings技术,重点可以关注如下的参数信息:能否在编码中捕获上下文信息、能够处理非词表之外的单词、泛化的能力、预训练的效率、是否免费、最终效果质量。

图片

一般而言在大型文本语料库上经过良好训练并且能够很好地捕获单词上下文的模型,那么GloVe、word2vec 或 FastText都是不错的选择。

图片

若某个业务场景急需更好的捕获单词上下文,而且变现需要优于Bert,那么RoBERTa或XLNet是不错的选择。

图片

图片

其他大公司的Embeddings模型,有免费也有收费的。OpenAI、Google、Amazon都可以按需选择。

Embedding模型和训练数据有关,用于训练模型的训练数据的大小和质量更大更高,则会产生更好的模型。还有一些选择的限制,例如XLNet是问答和自然语言推理的最佳选择,而RoBERTa是文本摘要和机器翻译的最佳选择。

图片

Word2Vec

图片

Word2Vec有两种,CBOW和Skip-Gram,很多资料都没有划对重点。那么接下跟随小鲁来正确打开。

先铺垫下背景,假如已经拥有某个语料库,需要对语料库的词汇进行Embedding(下文统一称为编码)。那么可以将语料库的所有文本串起来。然后预设窗口的大小(下图的示例为5),每个窗口正中的橙色部分即为目标单词,而绿色部则为上下文单词。随着窗口的滑动,就可以获取很多的样本(目标单词,上下文单词)。然后利用这些样本进行编码器的训练。

图片

那么CBOW和Skip-gram的区别就在于CBOW是用上下文的字符去预测目标单词,而Skip-gram则是用目标单词去预测上下文单词。

图片图片

是不是到这里开始有点凌乱了,不是embedding model么,不是学习编码么,怎么变成预测了?其实就是通过刚才获取的样本进行训练编码,以CBOW为例,将这个过程放大如下图。

四个上下文单词输入经过一层的矩阵运算之后,得到了中间变量,然后在通过另外一个矩阵运算算出目标单词,然后将目标单词和预测的结果对比,反过来调整两个矩阵的权重。如此反复直到损失收敛。

图片

这个过程其实就是为了通过训练得到橙色的两个矩阵,前面的矩阵学名为查询矩阵,后面矩阵学名为上下文矩阵。任何的输入通过这两个矩阵就可以编码。回到刚才的两种算法,无论谁预测谁,目标都是为了校正这两个矩阵。

下面是数学版本的推理过程,数学小白可以跳过。输入V维(也就是词汇表为V),每个词汇用N维的向量表示,那么需要学习的矩阵就是一个V_N维,一个N_V维。

图片

图片

*Co-occurrence Vector*

上一篇文章发布之后,有好学的同学咨询若滑动窗口,按照统计学的方法其实也可以得到一个矩阵,那么是如何计算每个单词的编码。

假如,所拥有的语料就两个文档:

文档1: “all that glitters is not gold”

文档2: “all is well that ends well”

图片所有的词汇一共10个,假定滑动窗口大小为1,那么就可以构造右侧的矩阵。
图片然后针对这个10_10(N_N,N为总词汇数)的矩阵进行PCA或者SVD算法进行降维分解,形成k-维的向量,进而最终完成编码。例如start的编码就是[0.705,0.484]

图片

*本章小结*

经过编码之后,所有单词对应的编码向量能够反应单词之间的关系。理解和搞清楚Embedding的原理是必须的,它是一切的基石,某种意义也是深度神经网络的灵魂,其实它就是人类所谓的抽象思维。大模型模拟人类解决了将海量的信息进行高效的压缩编码。

Embedding是一种很好的技术与思想,微软和Airbnb已经将它应用到推荐系统。主要参照了把Word Embedding应用到推荐场景的相似度计算中的方法,把每个商品项视为word,把用户行为序列视为一个集合。通过获取商品相似性作为自然语言中的上下文关系,构建神经网描绘商品在隐空间的向量表示。

Airbnb通过Embedding捕获用户的短期兴趣和长期兴趣,即利用用户点击会话和预定会话序列。这里默认浏览点击的房源之间存在强时序关系,即前面查看房源会对影响后面查看房源的印象。通过客户点击或预定方式生成租客类型、房租类型等的Embedding,来获取用户对短期租赁和长期租赁兴趣。

总而言之,Embedding对于时序的场景有着灵活的运用方式,本质上提取时序中前后的关系,进而在N-维的空间中获取内在的联系和逻辑。当然目前为止最出色的还是人脑,对于外界事件的分析、检索和反应几乎在一瞬间完成,而且处于低功耗。

零基础如何学习大模型 AI

领取方式在文末

为什么要学习大模型?

学习大模型课程的重要性在于它能够极大地促进个人在人工智能领域的专业发展。大模型技术,如自然语言处理和图像识别,正在推动着人工智能的新发展阶段。通过学习大模型课程,可以掌握设计和实现基于大模型的应用系统所需的基本原理和技术,从而提升自己在数据处理、分析和决策制定方面的能力。此外,大模型技术在多个行业中的应用日益增加,掌握这一技术将有助于提高就业竞争力,并为未来的创新创业提供坚实的基础。

大模型实际应用案例分享

①智能客服:某科技公司员工在学习了大模型课程后,成功开发了一套基于自然语言处理的大模型智能客服系统。该系统不仅提高了客户服务效率,还显著降低了人工成本。
②医疗影像分析:一位医学研究人员通过学习大模型课程,掌握了深度学习技术在医疗影像分析中的应用。他开发的算法能够准确识别肿瘤等病变,为医生提供了有力的诊断辅助。
③金融风险管理:一位金融分析师利用大模型课程中学到的知识,开发了一套信用评分模型。该模型帮助银行更准确地评估贷款申请者的信用风险,降低了不良贷款率。
④智能推荐系统:一位电商平台的工程师在学习大模型课程后,优化了平台的商品推荐算法。新算法提高了用户满意度和购买转化率,为公司带来了显著的增长。

这些案例表明,学习大模型课程不仅能够提升个人技能,还能为企业带来实际效益,推动行业创新发展。

学习资料领取

如果你对大模型感兴趣,可以看看我整合并且整理成了一份AI大模型资料包,需要的小伙伴文末免费领取哦,无偿分享!!!
vx扫描下方二维码即可
加上后会一个个给大家发

在这里插入图片描述

部分资料展示

一、 AI大模型学习路线图

整个学习分为7个阶段
在这里插入图片描述

二、AI大模型实战案例

涵盖AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,皆可用。
在这里插入图片描述

三、视频和书籍PDF合集

从入门到进阶这里都有,跟着老师学习事半功倍。
在这里插入图片描述

在这里插入图片描述

如果二维码失效,可以点击下方链接,一样的哦
【CSDN大礼包】最新AI大模型资源包,这里全都有!无偿分享!!!

标签:编码,LLM,模型,深入浅出,矩阵,单词,Embedding,上下文
From: https://blog.csdn.net/2401_85375186/article/details/141220272

相关文章

  • 全面指南:LLMs中的Llama-3模型——简介、安装教程、使用技巧及案例实践详解
    LLMs之Llama3:Llama-3的简介、安装和使用方法、案例应用之详细攻略导读:2024年4月18日,Meta重磅推出了MetaLlama3,本文章主要介绍了Meta推出的新的开源大语言模型MetaLlama3。模型架构Llama3是一种自回归语言模型,采用了优化的Transformer架构。调优版本使用了监督......
  • AI大模型神作推荐:深入浅出,从基础到前沿的全面学习!
    今天给大家推荐一本大模型神书,就是这本:《大语言模型:基础与前沿》,本书深入阐述了大语言模型的基本概念和算法、研究前沿以及应用,涵盖大语言模型的广泛主题,从基础到前沿,从方法到应用,不仅涵盖了经典的语言模型知识,还重点介绍了最新的研究成果和技术进展。适宜人群本书内容全......
  • 【重学c++primer】第五章第二节 深入浅出:左值和右值
    文章目录左值右值传统的左值和右值划分glvalueprvaluexvalue总结左值和右值的转换左值转右值decltype左值右值传统的左值和右值划分左值:英文为leftvalue,简写lvalue右值:英文为rightvalue,简写rvalue一个左一个右,这个左右的判定是针对什么呢?实际上是针对等......
  • SciTech-BigDataAIML-LLM-Transformer Series-Self-Attention:由Dot-Product(向量点乘)
    SelfAttention:由Dot-Product(向量点乘)说起https://lulaoshi.info/deep-learning/attention/transformer-attention.html#self-attention-从向量点乘说起Transformer[1]论文提出了一种Self-Attention(自注意力机制),Self-Attention的最核心的公式为:\(\large\begin{align*}......
  • vLLM (2) - 架构总览
    系列文章目录vLLM(1)-Qwen2推理&部署vLLM(2)-架构总览文章目录系列文章目录前言一、官方资料二、原理简述三、架构图四、项目结构总结前言上一篇通过Qwen2的vllm推理和部署,对vllm有了简单直观的了解,但是我们尚未涉及到它的工作原理。接下来我们将以vllm源......
  • 【课程总结】day24(下):大模型部署调用(vLLM+LangChain)
    前言在上一章【课程总结】day24(上):大模型三阶段训练方法(LLaMaFactory)内容中主要了解一个大模型的训练过程,无论是第三方的大模型还是自研的大模型,都需要部署到服务端,提供对应API接口供上层应用使用。所以,本章将主要了解vLLm+langchain的基本使用方法。大模型应用框架......
  • Xinference实战指南:全面解析LLM大模型部署流程,携手Dify打造高效AI应用实践案例,加速AI
    Xinference实战指南:全面解析LLM大模型部署流程,携手Dify打造高效AI应用实践案例,加速AI项目落地进程XorbitsInference(Xinference)是一个开源平台,用于简化各种AI模型的运行和集成。借助Xinference,您可以使用任何开源LLM、嵌入模型和多模态模型在云端或本地环境中运行推理,并......
  • LLMs 能否胜任「数据标注」?机遇与挑战并存
    编者按:目前,LLMs在机器翻译、文本生成、多轮问答等任务上已表现得非常出色了。人们开始思考它们是否也可以用于数据标注工作。数据标注是训练和评估各种机器学习模型的基础,一直是一项昂贵且耗时的工作。是否能够借助LLMs的强大能力来为数据标注流程降本增效呢?本文深入探......
  • LongWriter: 基于LLM代理可以将输出窗口大小扩展到10,000+个单词
    LLM可以处理长达100,000个token的输入,但在生成超过2,000词的适度长度输出时仍然面临困难,因为模型的有效生成长度本质上受到其在监督微调(SFT)过程中所见样本的限制。为解决这个问题,本文的作者引入了AgentWrite,这是一个基于代理的流程,它将超长生成任务分解为子任务,使现成的L......
  • 大模型的embedding详解
    **Embedding(嵌入)**是大语言模型和其他机器学习模型中的一种核心技术,它通过将离散的数据(如单词、句子、图像)转换为连续的向量表示,使得这些数据可以在高维空间中进行操作和分析。Embedding的本质是为模型提供一种能够捕捉数据之间语义或特征关系的紧凑数值表示。Embedding的基......