首页 > 其他分享 >落猫问题

落猫问题

时间:2024-08-17 21:30:07浏览次数:14  
标签:psi mathbf equation varphi 问题 落猫 rho dot

2. The model system

The model is a four-particle system, shown in figures 1 and 2. It consists of an axle of length \(L\). About the end points two perpendicular rods can rotate. These have particles attached at the end points, one heavy of mass \(M\) and one light of mass \(m\). Both rods have their centres of mass on the axle, so if the distance to \(m\) from the axle is \(\rho\), the distance to \(M\) is \(\mu\rho\) with \(\mu=m/M\).

We will assume that the relative angle of the two rods and the length of the rods can be changed by means of internal torques and forces, while there is no external torque acting on the system. The centres of mass of the rods will then remain on the axle. The only external forces are the weights of the particles and these can be represented by a resultant acting downwards at the common centre of mass \(G\). In the freely falling reference frame there are no external forces acting.

We describe the system using the angles \(\varphi_1\) and \(\varphi_2\) shown in figure 2. The distances of the lighter masses to the axis through the centres of mass are denoted \(\rho_1\) and \(\rho_2\) respectively. There are thus four degrees-of-freedom and the corresponding coordinates are \(\varphi_1,\varphi_2,\rho_1,\rho_2\).

2.1. Model angular momentum

We now introduce cylindrical (polar) coordinates \(\rho,\varphi,\) and \(z\) and corresponding unit vectors \(\mathbf e_{\rho_k}=\cos\varphi_k\mathbf e_x+\sin\varphi_k\mathbf e_y,\mathbf e_{\varphi_k}=-\sin\varphi_k\mathbf e_x+\cos\varphi_k\mathbf e_y\). In terms of these we have for the position vectors \(\boldsymbol r_k=\rho_k\mathbf e_{\rho_k}+z_k\mathbf e_z\) and for the velocities \(\dot{\boldsymbol r}_k=\dot\rho_k\mathbf e_{\rho_k}+\rho_k\dot\varphi_k\mathbf e_{\varphi_k}+\dot z_k\mathbf e_z\). The position vectors of the four particles of the model system, relative to the centre of mass \(G\), are

\[\begin{align} \boldsymbol r_1&=\rho_1\mathbf e_{\rho_1}-\left(\frac L2\right)\mathbf e_z, \\ \boldsymbol r_2&=-\mu\rho_1\mathbf e_{\rho_1}-\left(\frac L2\right)\mathbf e_z, \\ \boldsymbol r_3&=\rho_2\mathbf e_{\rho_2}+\left(\frac L2\right)\mathbf e_z, \\ \boldsymbol r_4&=-\mu\rho_2\mathbf e_{\rho_2}+\left(\frac L2\right)\mathbf e_z. \end{align} \]

Here \(L\) is the distance between the centres of mass of the rods and \(\mu=m/M\) ensures that the centres of mass are on the \(z\)-axis. The velocities are then

\[\begin{align} \boldsymbol v_1&=\dot\rho_1\mathbf e_{\rho_1}+\rho_1\dot\varphi_1\mathbf e_{\varphi_1}, \\ \boldsymbol v_2&=-\mu\dot\rho_1\mathbf e_{\rho_1}-\mu\rho_1\dot\varphi_1\mathbf e_{\varphi_1}, \\ \boldsymbol v_3&=\dot\rho_2\mathbf e_{\rho_2}+\rho_2\dot\varphi_2\mathbf e_{\varphi_2}, \\ \boldsymbol v_4&=-\mu\dot\rho_2\mathbf e_{\rho_2}-\mu\rho_2\dot\varphi_2\mathbf e_{\rho_2}. \end{align} \]

The angular momentum of the system with respect to the centre of mass has four contributions and these are

\[\begin{equation}\boldsymbol L_G=m\boldsymbol r_1\times\boldsymbol v_1+M\boldsymbol r_2\times\boldsymbol v_2+m\boldsymbol r_3\times\boldsymbol v_3+M\boldsymbol r_4\times\boldsymbol v_4.\end{equation} \]

Straightforward calculation simply gives

\[\begin{equation}\boldsymbol L_G=m\left(1+\mu\right)\left(\rho_1^2\dot\varphi_1+\rho_2^2\dot\varphi_2\right)\mathbf e_z,\end{equation} \]

since all other terms cancel.

2.2. Two new variables

Assume now that the there is no external torque and that angular momentum is zero initially. We then have the simple relationship

\[\begin{equation}0=\rho_1^2\dot\varphi_1+\rho_2^2\dot\varphi_2.\end{equation} \]

Let us define the mean angular velocity \(\dot\varphi\) and relative angular velocity \(\dot\psi\) through

\[\begin{align} &\begin{array}{ll} \displaystyle\dot\varphi=\frac12(\dot\varphi_1+\dot\varphi_2),&\displaystyle\dot\psi=\dot\varphi_2-\dot\varphi_1, \end{array} \\ &\begin{array}{ll} \displaystyle\dot\varphi_1=\dot\varphi-\frac12\dot\psi,&\displaystyle\dot\varphi_2=\dot\varphi+\frac12\dot\psi. \end{array} \end{align} \]

The zero angular momentum equation \((11)\) then gives

\[\begin{equation}0=\left(\rho_1^2+\rho_2^2\right)\dot\varphi-\frac12\left(\rho_1^2-\rho_2^2\right)\dot\psi.\end{equation} \]

From this equation we see that if \(\dot\psi=0\), so is \(\dot\varphi\). It is also clear that if \(\rho_1=\rho_2\) then \(\dot\varphi=0\). There will thus only be a mean angular velocity if both \(\rho_1\ne\rho_2\) and \(\dot\psi\ne0\).

2.3. Differential equation of rotation

Equation \((14)\) gives the mean angular velocity of our model system

\[\begin{equation}\dot\varphi=\frac12\frac{\rho_1^2-\rho_2^2}{\rho_1^2+\rho_2^2}\dot\psi.\end{equation} \]

We put

\[\begin{equation}f(t)\equiv\frac12\frac{\rho_1^2(t)-\rho_2^2(t)}{\rho_1^2(t)+\rho_2^2(t)},\end{equation} \]

since only this combination of length changes will affect the mean angular velocity. This gives us the differential equation

\[\begin{equation}\frac{\mathrm d\varphi}{\mathrm dt}=f(t)\dot\psi(t).\end{equation} \]

We now wish to find functions \(f(t),\psi(t)\) that are such that after some time \(T\), the duration of the fall, the mean angle \(\varphi\) has changed by \(\pi~(180^\circ)\),

\[\begin{equation}\varphi(T)-\varphi(0)=\int_0^Tf(t)\dot\psi(t)\mathrm dt=\pi.\end{equation} \]

To model the cat the functions \(f(t),\psi(t)\) and \(\dot\psi(t)\) should all start and end with zero values

\[\begin{equation} \begin{array}{lll} \displaystyle f(0)=f(T)=0,&\psi(0)=\psi(T)=0,&\dot\psi(0)=\dot\psi(T)=0. \end{array} \end{equation} \]

This corresponds to the cat starting and ending its fall with equally long front and hind legs, which are parallel and non-rotating. To model the cat the relative angle \(\psi(t)\) should change from zero to some maximum value and back to zero since this is the what photos and videos indicate. This means that the function \(\dot\psi(t)\) changes sign once. For the system to keep rotating in the same direction the function \(f(t)\) must therefore change sign at the same time.

2.4. Two solutions

The simplest, and probably optimal, solution of this kind is given by choosing piecewise constant functions \(f(t)\) and \(\dot\psi(t)\), with \(f(t)\) discontinuous. It is given by,

\[\begin{equation} \begin{matrix} t=0&f=0&\rho_1=\rho_2&\psi=0&\dot\psi=0&\dot\varphi=0 \\[1ex] 0<t<T/2&f=1/2&\rho_2=0&\psi=\omega t&\dot\psi=\omega&\dot\varphi=\omega/2 \\[1ex] t=T/2&f=0&\rho_1=\rho_2&\psi=\omega T/2&\dot\psi=0&\dot\varphi=0 \\[1ex] T/2<t<T&f=-1/2&\rho_1=0&\psi=\omega(T-t)&\dot\psi=-\omega&\dot\varphi=\omega/2 \\[1ex] t=T&f=0&\rho_1=\rho_2&\psi=0&\dot\psi=0&\dot\varphi=0. \end{matrix} \end{equation} \]

The total rotation angle \(\varphi(T)\) will be \(\pi\) if \(\omega=2\pi/T\). The maximum relative (twist) angle is then \(\psi(T/2)=\pi\). The solution is illustrated to the left in figure 3 and in figure 4. There are, obviously, some problems with this solution, also apart from requiring infinite accelerations and neglecting the time taken to extend and retract the rods (legs). It is a bit dubious to put one of the lengths \(\rho_k\) equal to zero since then the relative angle becomes undefined. This, however, can be fixed rather easily by putting the shorter length to \(1/10\) times the longer, instead of putting it to zero. The values of \(f(t)\) will then only change by one per cent, from those given in \((20)\).

A smooth and differentiable solution can be achieved, e.g. by choosing

\[\begin{equation} \begin{array}{ll} \displaystyle\psi(t)=\Psi\frac{16}{T^4}[t(T-t)]^2,&\displaystyle f(t)=\frac{3\sqrt3}{T^3}t(T-t)(T-2t). \end{array} \end{equation} \]

Physically one must have \(-1/2\le f(t)\le1/2\) and this choice for \(f(t)\) obeys this. Here \(\Psi=\psi(T/2)\) is the maximum relative angle, a so far unknown parameter. The angular velocity is then

\[\begin{equation}\dot\psi(t)=\frac{32\Psi}{T^4}t(T-t)(T-2t)\end{equation} \]

and the mean angular velocity \((17)\) is

\[\begin{equation}\frac{\mathrm d\varphi}{\mathrm dt}=\frac{96\sqrt3\Psi}{T^7}[t(T-t)(T-2t)]^2.\end{equation} \]

The rotation angle is then

\[\begin{equation}\varphi(T)-\varphi(0)=\int_0^T\dot\varphi(t)\mathrm dt=\frac{16\sqrt3}{35}\Psi.\end{equation} \]

This will be the desired angle \(\pi\) if the maximum relative angle is

\[\begin{equation}\Psi=\frac{35}{16\sqrt3}\pi\approx1.263\pi.\end{equation} \]

We note that this value, approximately \(227^\circ\), is substantially larger than for the solution in \((20)\). The explicit solution is thus

\[\begin{equation}\varphi(t)=\frac\pi{T^7}t^3\left(120t^4-420Tt^3+546T^2t^2-315T^3t+70T^4\right).\end{equation} \]

The two solutions are compared in figure 3. There are of course an infinite set of solutions to the differential equation \((17)\) depending on the choice of control functions \(\psi(t)\) and \(f(t)\). Those presented here are chosen to resemble the observed behaviour of falling cats.

标签:psi,mathbf,equation,varphi,问题,落猫,rho,dot
From: https://www.cnblogs.com/laoshan-plus/p/18365006

相关文章

  • 非稳态导热微分方程 + 无限大平板的非稳态传热问题
    外层肉和内层肉的球坐标传热微分方程组\[\begin{cases}\dfrac1a\dfrac{\partialT_1}{\partialt}=\dfrac1{r^2}\dfrac\partial{\partialr}\left(r^2\dfrac{\partialT_1}{\partialr}\right)\\[2ex]\dfrac1a\dfrac{\partialT_3}{\partialt}=\dfrac1{r^2}\dfrac\......
  • IPv6无状态地址自动配置(SLAAC)-常见问题
    SLAAC如何工作?主机在启动或接口UP后,发送路由器祈求(RouterSolicitation,RS),路由器收到此消息后,回复路由器宣告(RouterAdvertisement,RA)。此宣告可能是单播给主机的,也可能是多播的,取决于路由器当前的状态(见下文)。路由器在RA中设置M位和O位,针对这两个标志位,解释如下:M位:“Managedadd......
  • powershell命令 域管理: 加入域:将计算机加入指定的 Active Directory 域。 重新加入域
    PowerShell命令示例:域管理加入域:powershellCopyCodeAdd-Computer-DomainName"yourdomain.com"-Credential"yourdomain\username"-Restart重新加入域:powershellCopyCodeRemove-Computer-UnjoinDomainCredential"yourdomain\username"......
  • 《心灵杀手》安装时renderer_w32_f.dll丢失:从原因分析到实际操作,全方位解决《心灵杀手
    《心灵杀手》(AlanWake)是一款备受好评的动作冒险游戏,但有时玩家在安装过程中会遇到“renderer_w32_f.dll丢失”的错误提示。这个问题通常意味着游戏启动时未能找到所需的动态链接库(DynamicLinkLibrary,DLL)文件,从而阻止了游戏的正常安装或运行。本文将探讨这一问题的常见原因......
  • Web 端项目系统访问页面很慢,后台数据返回很快,网络也没问题,是什么导致的呢?
    一、前端方面可能的原因1.页面加载过多资源•可能页面中包含了大量的图片、视频、脚本等资源,这些资源的加载会占用大量时间。可以检查页面的资源大小和数量,看是否有可以优化的地方,比如压缩图片、合并脚本等。2.前端代码效率问题•检查前端代码是否存在性能瓶颈。例如,Ja......
  • 宝塔 ftp访问不了的问题 filezilla访问不了Purefpt服务
     在使用filezilla220Youwillbedisconnectedafter15minutesofinactivity. 命令:AUTHTLS 阿里云的端口放开设置:39000,40000是PureFtp服务的被动模式端口放开  修改PureFTp的配置: ForcePassiveIP放开,并配置成自己服务器的外网地址:  ......
  • 8.Centos7停止维护问题
    1.Centos切换镜像源1.打开配置yum所在文件,CentOS-Base.repovi/etc/yum.repos.d/CentOS-Base.repo2.将CentOS-Base.repo里的内容全部替换为以下内容#CentOS-Base.repo[base]name=CentOS-$releasever-Basebaseurl=http://mirrors.aliyun.com/centos/$releasever/......
  • DzzOffice 修改未授权用户能调用组织部门信息问题
    问题描述无需登录,直接访问/index.php?mod=system&op=orgtree,出现组织部门信息解决方法一该方法是直接将system应用(系统组件)设置为仅允许登录用户使用文件:\dzz\system\config\config.php添加'allow_view'=>1,参数<?phpreturnarray('allow_robot'=>false,'allo......
  • DzzOffice修改权限判断方式解决另存为窗口新建文件无权限问题
    在执行另存为操作并选择文件与位置时,如提示无权限问题,此现象源于权限判断方式存在差异。为解决此问题,以在另存为窗口新建文件时提示无权限问题为例进行阐述。打开\dzz\system\fileselection\ajax.php文件。找到elseif($operation=='newIco'){//新建文件将perm_ch......
  • 深度搜索迷宫问题
    深度搜索(Depth-FirstSearch,DFS)是一种用于图的遍历的算法,也可以用来解决迷宫问题。迷宫问题是指在一个迷宫中,找到从起点到终点的路径。以下是深度搜索解决迷宫问题的步骤:创建一个二维数组来表示迷宫,其中0表示可以通过的路径,1表示墙壁或障碍物。同时创建一个与迷宫相同大小的......