首页 > 其他分享 >MiniCPM-V 2.6 面壁“小钢炮”,多图、视频理解多模态模型,部署和推理实战教程

MiniCPM-V 2.6 面壁“小钢炮”,多图、视频理解多模态模型,部署和推理实战教程

时间:2024-08-14 23:37:41浏览次数:16  
标签:app MiniCPM image 多图 model chat device message 2.6

MiniCPM-V 2.6是清华和面壁智能最新发布的多模态模型,亦称面壁“小钢炮”,它是 MiniCPM-V 系列中最新、性能最佳的模型。该模型基于 SigLip-400MQwen2-7B 构建,仅 8B 参数,但却取得 20B 以下单图、多图、视频理解 3 SOTA 成绩,一举将端侧 AI 多模态能力拉升至全面对标 GPT-4V 水平。

MiniCPM-V 2.6 的主要特点包括:

  1. 8B 参数,单图、多图、视频理解全面超越 GPT-4V !
  2. 小钢炮一口气将实时视频理解、多图联合理解、多图 ICL 等能力首次搬上端侧多模态模型。
  3. 端侧友好:量化后端侧内存仅占 6 GB,个人笔记本电脑可部署和推理。

更多性能和功能介绍,参见 GitHub 官网:https://github.com/OpenBMB/MiniCPM-V

这么小的参数量,却能带来这么强悍的能力,老牛同学决定部署,和大家一起一探究竟:

  1. 准备环境、下载源代码和模型权重文件
  2. 模型部署,进行图片理解推理、WebUI 可视化部署和推理

环境准备和模型下载

环境准备分为 3 部分:Miniconda配置、下载 GitHub 源代码、下载MiniCPM-V 2.6模型权重文件。

Miniconda 配置

工欲善其事,必先利其器,大模型研发环境先准备好,为后面部署和推理做好准备。详细教程,大家可以参考之前的文章:大模型应用研发基础环境配置(Miniconda、Python、Jupyter Lab、Ollama 等)

conda create --name MiniCPM-V python=3.10 -y

我们创建 Python 虚拟环境:MiniCPM-V,同时 Python 的主版本:3.10

完成之后,我们激活虚拟环境:conda activate MiniCPM-V

GitHub 源代码下载

GitHub 源代码地址:https://github.com/OpenBMB/MiniCPM-V.git

源代码下载的目录:MiniCPM-V

git clone https://github.com/OpenBMB/MiniCPM-V.git MiniCPM-V

源代码下载完成之后,我们就可以安装 Python 依赖包了,包依赖列表文件:MiniCPM-V/requirements.txt

packaging==23.2
addict==2.4.0
editdistance==0.6.2
einops==0.7.0
fairscale==0.4.0
jsonlines==4.0.0
markdown2==2.4.10
matplotlib==3.7.4
more_itertools==10.1.0
nltk==3.8.1
numpy==1.24.4
opencv_python_headless==4.5.5.64
openpyxl==3.1.2
Pillow==10.1.0
sacrebleu==2.3.2
seaborn==0.13.0
shortuuid==1.0.11
timm==0.9.10
torch==2.1.2
torchvision==0.16.2
tqdm==4.66.1
protobuf==4.25.0
transformers==4.40.0
typing_extensions==4.8.0
uvicorn==0.24.0.post1
sentencepiece==0.1.99
accelerate==0.30.1
socksio==1.0.0
gradio==4.41.0
gradio_client
http://thunlp.oss-cn-qingdao.aliyuncs.com/multi_modal/never_delete/modelscope_studio-0.4.0.9-py3-none-any.whl
eva-decord

特别注意:最后一个依赖包decord通过pip install decord安装可能会报如下错误,因此,老牛同学找到了替代的依赖包eva-decord,可正常安装。

(MiniCPM-V) $ pip install decord
ERROR: Could not find a version that satisfies the requirement decord (from versions: none)
ERROR: No matching distribution found for decord

模型权重文件下载

模型权重文件比较大,我们需要通过 Git 大文件系统下载:

权重文件下载的目录:MiniCPM-V2.6

git lfs install
git clone https://www.modelscope.cn/openbmb/minicpm-v-2_6.git MiniCPM-V2.6

下载过程中,如果因网络等原因中断,我们可以继续断点下载:

cd MiniCPM-V2.6
git lfs pull

小试牛刀:单图理解体验

老牛同学网上找了一张汽车图片,先试一下“小钢炮”的威力:

汽车尾部图

由于模型推理过程,需要用到权重模型中的 Python 模块,因此我们把推理的 Python 代码放到模型权重文件目录中:MiniCPM-V2.6/MiniCPM-V2.6-01.py

# MiniCPM-V2.6-01.py
import torch
from PIL import Image
from transformers import AutoModel, AutoTokenizer

# 模型权重文件目录
model_dir = '.'

# 加载模型:local_files_only 加载本地模型,trust_remote_code 执行远程代码(必须)
model = AutoModel.from_pretrained(
    model_dir,
    local_files_only=True,
    trust_remote_code=True,
)

# 设置推理模式,如果有卡:model = model.eval().cuda()
model = model.eval()

# 加载分词器
tokenizer = AutoTokenizer.from_pretrained(
    model_dir,
    local_files_only=True,
    trust_remote_code=True,
)

# 测试的汽车尾部图片,可以指定其它目录
image = Image.open('Car-01.jpeg').convert('RGB')

# 图片理解:自然语言理解 + 图片理解
question = '请问这是一张什么图片?'
msgs = [{'role': 'user', 'content': [image, question]}]

res = model.chat(
    image=None,
    msgs=msgs,
    tokenizer=tokenizer,
    sampling=True,
    stream=True
)

# 理解结果
generated_text = ""
for new_text in res:
    generated_text += new_text
    print(new_text, flush=True, end='')

图片理解的输出结果如下:

汽车尾部图理解

可以看出,MiniCPM-V 2.6对图片的理解非常详尽:汽车、奥迪、A6L、尾部、黑色、中国、牌照区域、牌照内容等。

如果要给图片理解推理的结果打分的话,老牛同学打99 分,另外1 分的不足是给老牛同学自己的:推理速度实在太慢了,只能怪老牛同学的笔记本电脑配置太低了!

WebUI 可视化,推理自由

我们本地完成图片理解推理之后,在来看看 WebUI 可视化推理界面,体验会更好。同样的,我们把 WebUI 代码放到模型权重文件目录中:MiniCPM-V2.6/MiniCPM-V2.6-WebUI.py

# MiniCPM-V2.6-WebUI.py
#!/usr/bin/env python
# encoding: utf-8
import torch
import argparse
from transformers import AutoModel, AutoTokenizer
import gradio as gr
from PIL import Image
from decord import VideoReader, cpu
import io
import os
import copy
import requests
import base64
import json
import traceback
import re
import modelscope_studio as mgr

# 解析参数
parser = argparse.ArgumentParser(description='demo')
parser.add_argument('--device', type=str, default='cuda', help='cuda or mps')
parser.add_argument('--multi-gpus', action='store_true', default=False, help='use multi-gpus')
args = parser.parse_args()
device = args.device
assert device in ['cuda', 'mps']

# 模型权重文件目录
model_path = '.'

# 加载模型和分词器
if 'int4' in model_path:
    if device == 'mps':
        print('Error: running int4 model with bitsandbytes on Mac is not supported right now.')
        exit()
    model = AutoModel.from_pretrained(model_path, local_files_only=True, trust_remote_code=True)
else:
    if args.multi_gpus:
        from accelerate import load_checkpoint_and_dispatch, init_empty_weights, infer_auto_device_map
        with init_empty_weights():
            model = AutoModel.from_pretrained(model_path, local_files_only=True, trust_remote_code=True, attn_implementation='sdpa', torch_dtype=torch.bfloat16)
        device_map = infer_auto_device_map(model, max_memory={0: "10GB", 1: "10GB"},
            no_split_module_classes=['SiglipVisionTransformer', 'Qwen2DecoderLayer'])
        device_id = device_map["llm.model.embed_tokens"]
        device_map["llm.lm_head"] = device_id # firtt and last layer should be in same device
        device_map["vpm"] = device_id
        device_map["resampler"] = device_id
        device_id2 = device_map["llm.model.layers.26"]
        device_map["llm.model.layers.8"] = device_id2
        device_map["llm.model.layers.9"] = device_id2
        device_map["llm.model.layers.10"] = device_id2
        device_map["llm.model.layers.11"] = device_id2
        device_map["llm.model.layers.12"] = device_id2
        device_map["llm.model.layers.13"] = device_id2
        device_map["llm.model.layers.14"] = device_id2
        device_map["llm.model.layers.15"] = device_id2
        device_map["llm.model.layers.16"] = device_id2
        #print(device_map)

        model = load_checkpoint_and_dispatch(model, model_path, local_files_only=True, dtype=torch.bfloat16, device_map=device_map)
    else:
        model = AutoModel.from_pretrained(model_path, local_files_only=True, trust_remote_code=True)
        model = model.to(device=device)
tokenizer = AutoTokenizer.from_pretrained(model_path, local_files_only=True, trust_remote_code=True)

# 设置推理模式
model.eval()

ERROR_MSG = "Error, please retry"
model_name = 'MiniCPM-V 2.6'
MAX_NUM_FRAMES = 64
IMAGE_EXTENSIONS = {'.jpg', '.jpeg', '.png', '.bmp', '.tiff', '.webp'}
VIDEO_EXTENSIONS = {'.mp4', '.mkv', '.mov', '.avi', '.flv', '.wmv', '.webm', '.m4v'}

def get_file_extension(filename):
    return os.path.splitext(filename)[1].lower()

def is_image(filename):
    return get_file_extension(filename) in IMAGE_EXTENSIONS

def is_video(filename):
    return get_file_extension(filename) in VIDEO_EXTENSIONS


form_radio = {
    'choices': ['Beam Search', 'Sampling'],
    #'value': 'Beam Search',
    'value': 'Sampling',
    'interactive': True,
    'label': 'Decode Type'
}


def create_component(params, comp='Slider'):
    if comp == 'Slider':
        return gr.Slider(
            minimum=params['minimum'],
            maximum=params['maximum'],
            value=params['value'],
            step=params['step'],
            interactive=params['interactive'],
            label=params['label']
        )
    elif comp == 'Radio':
        return gr.Radio(
            choices=params['choices'],
            value=params['value'],
            interactive=params['interactive'],
            label=params['label']
        )
    elif comp == 'Button':
        return gr.Button(
            value=params['value'],
            interactive=True
        )


def create_multimodal_input(upload_image_disabled=False, upload_video_disabled=False):
    return mgr.MultimodalInput(upload_image_button_props={'label': 'Upload Image', 'disabled': upload_image_disabled, 'file_count': 'multiple'},
                                        upload_video_button_props={'label': 'Upload Video', 'disabled': upload_video_disabled, 'file_count': 'single'},
                                        submit_button_props={'label': 'Submit'})


def chat(img, msgs, ctx, params=None, vision_hidden_states=None):
    try:
        print('msgs:', msgs)
        answer = model.chat(
            image=None,
            msgs=msgs,
            tokenizer=tokenizer,
            **params
        )
        res = re.sub(r'(<box>.*</box>)', '', answer)
        res = res.replace('<ref>', '')
        res = res.replace('</ref>', '')
        res = res.replace('<box>', '')
        answer = res.replace('</box>', '')
        print('answer:', answer)
        return 0, answer, None, None
    except Exception as e:
        print(e)
        traceback.print_exc()
        return -1, ERROR_MSG, None, None


def encode_image(image):
    if not isinstance(image, Image.Image):
        if hasattr(image, 'path'):
            image = Image.open(image.path).convert("RGB")
        else:
            image = Image.open(image.file.path).convert("RGB")
    # resize to max_size
    max_size = 448*16
    if max(image.size) > max_size:
        w,h = image.size
        if w > h:
            new_w = max_size
            new_h = int(h * max_size / w)
        else:
            new_h = max_size
            new_w = int(w * max_size / h)
        image = image.resize((new_w, new_h), resample=Image.BICUBIC)
    return image
    ## save by BytesIO and convert to base64
    #buffered = io.BytesIO()
    #image.save(buffered, format="png")
    #im_b64 = base64.b64encode(buffered.getvalue()).decode()
    #return {"type": "image", "pairs": im_b64}


def encode_video(video):
    def uniform_sample(l, n):
        gap = len(l) / n
        idxs = [int(i * gap + gap / 2) for i in range(n)]
        return [l[i] for i in idxs]

    if hasattr(video, 'path'):
        vr = VideoReader(video.path, ctx=cpu(0))
    else:
        vr = VideoReader(video.file.path, ctx=cpu(0))
    sample_fps = round(vr.get_avg_fps() / 1)  # FPS
    frame_idx = [i for i in range(0, len(vr), sample_fps)]
    if len(frame_idx)>MAX_NUM_FRAMES:
        frame_idx = uniform_sample(frame_idx, MAX_NUM_FRAMES)
    video = vr.get_batch(frame_idx).asnumpy()
    video = [Image.fromarray(v.astype('uint8')) for v in video]
    video = [encode_image(v) for v in video]
    print('video frames:', len(video))
    return video


def check_mm_type(mm_file):
    if hasattr(mm_file, 'path'):
        path = mm_file.path
    else:
        path = mm_file.file.path
    if is_image(path):
        return "image"
    if is_video(path):
        return "video"
    return None


def encode_mm_file(mm_file):
    if check_mm_type(mm_file) == 'image':
        return [encode_image(mm_file)]
    if check_mm_type(mm_file) == 'video':
        return encode_video(mm_file)
    return None

def make_text(text):
    #return {"type": "text", "pairs": text} # # For remote call
    return text

def encode_message(_question):
    files = _question.files
    question = _question.text
    pattern = r"\[mm_media\]\d+\[/mm_media\]"
    matches = re.split(pattern, question)
    message = []
    if len(matches) != len(files) + 1:
        gr.Warning("Number of Images not match the placeholder in text, please refresh the page to restart!")
    assert len(matches) == len(files) + 1

    text = matches[0].strip()
    if text:
        message.append(make_text(text))
    for i in range(len(files)):
        message += encode_mm_file(files[i])
        text = matches[i + 1].strip()
        if text:
            message.append(make_text(text))
    return message


def check_has_videos(_question):
    images_cnt = 0
    videos_cnt = 0
    for file in _question.files:
        if check_mm_type(file) == "image":
            images_cnt += 1
        else:
            videos_cnt += 1
    return images_cnt, videos_cnt


def count_video_frames(_context):
    num_frames = 0
    for message in _context:
        for item in message["content"]:
            #if item["type"] == "image": # For remote call
            if isinstance(item, Image.Image):
                num_frames += 1
    return num_frames


def respond(_question, _chat_bot, _app_cfg, params_form):
    _context = _app_cfg['ctx'].copy()
    _context.append({'role': 'user', 'content': encode_message(_question)})

    images_cnt = _app_cfg['images_cnt']
    videos_cnt = _app_cfg['videos_cnt']
    files_cnts = check_has_videos(_question)
    if files_cnts[1] + videos_cnt > 1 or (files_cnts[1] + videos_cnt == 1 and files_cnts[0] + images_cnt > 0):
        gr.Warning("Only supports single video file input right now!")
        return _question, _chat_bot, _app_cfg

    if params_form == 'Beam Search':
        params = {
            'sampling': False,
            'num_beams': 3,
            'repetition_penalty': 1.2,
            "max_new_tokens": 2048
        }
    else:
        params = {
            'sampling': True,
            'top_p': 0.8,
            'top_k': 100,
            'temperature': 0.7,
            'repetition_penalty': 1.05,
            "max_new_tokens": 2048
        }

    if files_cnts[1] + videos_cnt > 0:
        params["max_inp_length"] = 4352 # 4096+256
        params["use_image_id"] = False
        params["max_slice_nums"] = 1 if count_video_frames(_context) > 16 else 2

    code, _answer, _, sts = chat("", _context, None, params)

    images_cnt += files_cnts[0]
    videos_cnt += files_cnts[1]
    _context.append({"role": "assistant", "content": [make_text(_answer)]})
    _chat_bot.append((_question, _answer))
    if code == 0:
        _app_cfg['ctx']=_context
        _app_cfg['sts']=sts
    _app_cfg['images_cnt'] = images_cnt
    _app_cfg['videos_cnt'] = videos_cnt

    upload_image_disabled = videos_cnt > 0
    upload_video_disabled = videos_cnt > 0 or images_cnt > 0
    return create_multimodal_input(upload_image_disabled, upload_video_disabled), _chat_bot, _app_cfg


def fewshot_add_demonstration(_image, _user_message, _assistant_message, _chat_bot, _app_cfg):
    ctx = _app_cfg["ctx"]
    message_item = []
    if _image is not None:
        image = Image.open(_image).convert("RGB")
        ctx.append({"role": "user", "content": [encode_image(image), make_text(_user_message)]})
        message_item.append({"text": "[mm_media]1[/mm_media]" + _user_message, "files": [_image]})
    else:
        if _user_message:
            ctx.append({"role": "user", "content": [make_text(_user_message)]})
            message_item.append({"text": _user_message, "files": []})
        else:
            message_item.append(None)
    if _assistant_message:
        ctx.append({"role": "assistant", "content": [make_text(_assistant_message)]})
        message_item.append({"text": _assistant_message, "files": []})
    else:
        message_item.append(None)

    _chat_bot.append(message_item)
    return None, "", "", _chat_bot, _app_cfg


def fewshot_respond(_image, _user_message, _chat_bot, _app_cfg, params_form):
    user_message_contents = []
    _context = _app_cfg["ctx"].copy()
    if _image:
        image = Image.open(_image).convert("RGB")
        user_message_contents += [encode_image(image)]
    if _user_message:
        user_message_contents += [make_text(_user_message)]
    if user_message_contents:
        _context.append({"role": "user", "content": user_message_contents})

    if params_form == 'Beam Search':
        params = {
            'sampling': False,
            'num_beams': 3,
            'repetition_penalty': 1.2,
            "max_new_tokens": 2048
        }
    else:
        params = {
            'sampling': True,
            'top_p': 0.8,
            'top_k': 100,
            'temperature': 0.7,
            'repetition_penalty': 1.05,
            "max_new_tokens": 2048
        }

    code, _answer, _, sts = chat("", _context, None, params)

    _context.append({"role": "assistant", "content": [make_text(_answer)]})

    if _image:
        _chat_bot.append([
            {"text": "[mm_media]1[/mm_media]" + _user_message, "files": [_image]},
            {"text": _answer, "files": []}
        ])
    else:
        _chat_bot.append([
            {"text": _user_message, "files": [_image]},
            {"text": _answer, "files": []}
        ])
    if code == 0:
        _app_cfg['ctx']=_context
        _app_cfg['sts']=sts
    return None, '', '', _chat_bot, _app_cfg


def regenerate_button_clicked(_question, _image, _user_message, _assistant_message, _chat_bot, _app_cfg, params_form):
    if len(_chat_bot) <= 1 or not _chat_bot[-1][1]:
        gr.Warning('No question for regeneration.')
        return '', _image, _user_message, _assistant_message, _chat_bot, _app_cfg
    if _app_cfg["chat_type"] == "Chat":
        images_cnt = _app_cfg['images_cnt']
        videos_cnt = _app_cfg['videos_cnt']
        _question = _chat_bot[-1][0]
        _chat_bot = _chat_bot[:-1]
        _app_cfg['ctx'] = _app_cfg['ctx'][:-2]
        files_cnts = check_has_videos(_question)
        images_cnt -= files_cnts[0]
        videos_cnt -= files_cnts[1]
        _app_cfg['images_cnt'] = images_cnt
        _app_cfg['videos_cnt'] = videos_cnt
        upload_image_disabled = videos_cnt > 0
        upload_video_disabled = videos_cnt > 0 or images_cnt > 0
        _question, _chat_bot, _app_cfg = respond(_question, _chat_bot, _app_cfg, params_form)
        return _question, _image, _user_message, _assistant_message, _chat_bot, _app_cfg
    else:
        last_message = _chat_bot[-1][0]
        last_image = None
        last_user_message = ''
        if last_message.text:
            last_user_message = last_message.text
        if last_message.files:
            last_image = last_message.files[0].file.path
        _chat_bot = _chat_bot[:-1]
        _app_cfg['ctx'] = _app_cfg['ctx'][:-2]
        _image, _user_message, _assistant_message, _chat_bot, _app_cfg = fewshot_respond(last_image, last_user_message, _chat_bot, _app_cfg, params_form)
        return _question, _image, _user_message, _assistant_message, _chat_bot, _app_cfg


def flushed():
    return gr.update(interactive=True)


def clear(txt_message, chat_bot, app_session):
    txt_message.files.clear()
    txt_message.text = ''
    chat_bot = copy.deepcopy(init_conversation)
    app_session['sts'] = None
    app_session['ctx'] = []
    app_session['images_cnt'] = 0
    app_session['videos_cnt'] = 0
    return create_multimodal_input(), chat_bot, app_session, None, '', ''


def select_chat_type(_tab, _app_cfg):
    _app_cfg["chat_type"] = _tab
    return _app_cfg


init_conversation = [
    [
        None,
        {
            # The first message of bot closes the typewriter.
            "text": "You can talk to me now",
            "flushing": False
        }
    ],
]


css = """
video { height: auto !important; }
.example label { font-size: 16px;}
"""

introduction = """

## Features:
1. Chat with single image
2. Chat with multiple images
3. Chat with video
4. In-context few-shot learning

Click `How to use` tab to see examples.
"""


with gr.Blocks(css=css) as demo:
    with gr.Tab(model_name):
        with gr.Row():
            with gr.Column(scale=1, min_width=300):
                gr.Markdown(value=introduction)
                params_form = create_component(form_radio, comp='Radio')
                regenerate = create_component({'value': 'Regenerate'}, comp='Button')
                clear_button = create_component({'value': 'Clear History'}, comp='Button')

            with gr.Column(scale=3, min_width=500):
                app_session = gr.State({'sts':None,'ctx':[], 'images_cnt': 0, 'videos_cnt': 0, 'chat_type': 'Chat'})
                chat_bot = mgr.Chatbot(label=f"Chat with {model_name}", value=copy.deepcopy(init_conversation), height=600, flushing=False, bubble_full_width=False)

                with gr.Tab("Chat") as chat_tab:
                    txt_message = create_multimodal_input()
                    chat_tab_label = gr.Textbox(value="Chat", interactive=False, visible=False)

                    txt_message.submit(
                        respond,
                        [txt_message, chat_bot, app_session, params_form],
                        [txt_message, chat_bot, app_session]
                    )

                with gr.Tab("Few Shot") as fewshot_tab:
                    fewshot_tab_label = gr.Textbox(value="Few Shot", interactive=False, visible=False)
                    with gr.Row():
                        with gr.Column(scale=1):
                            image_input = gr.Image(type="filepath", sources=["upload"])
                        with gr.Column(scale=3):
                            user_message = gr.Textbox(label="User")
                            assistant_message = gr.Textbox(label="Assistant")
                            with gr.Row():
                                add_demonstration_button = gr.Button("Add Example")
                                generate_button = gr.Button(value="Generate", variant="primary")
                    add_demonstration_button.click(
                        fewshot_add_demonstration,
                        [image_input, user_message, assistant_message, chat_bot, app_session],
                        [image_input, user_message, assistant_message, chat_bot, app_session]
                    )
                    generate_button.click(
                        fewshot_respond,
                        [image_input, user_message, chat_bot, app_session, params_form],
                        [image_input, user_message, assistant_message, chat_bot, app_session]
                    )

                chat_tab.select(
                    select_chat_type,
                    [chat_tab_label, app_session],
                    [app_session]
                )
                chat_tab.select( # do clear
                    clear,
                    [txt_message, chat_bot, app_session],
                    [txt_message, chat_bot, app_session, image_input, user_message, assistant_message]
                )
                fewshot_tab.select(
                    select_chat_type,
                    [fewshot_tab_label, app_session],
                    [app_session]
                )
                fewshot_tab.select( # do clear
                    clear,
                    [txt_message, chat_bot, app_session],
                    [txt_message, chat_bot, app_session, image_input, user_message, assistant_message]
                )
                chat_bot.flushed(
                    flushed,
                    outputs=[txt_message]
                )
                regenerate.click(
                    regenerate_button_clicked,
                    [txt_message, image_input, user_message, assistant_message, chat_bot, app_session, params_form],
                    [txt_message, image_input, user_message, assistant_message, chat_bot, app_session]
                )
                clear_button.click(
                    clear,
                    [txt_message, chat_bot, app_session],
                    [txt_message, chat_bot, app_session, image_input, user_message, assistant_message]
                )

    with gr.Tab("How to use"):
        with gr.Column():
            with gr.Row():
                image_example = gr.Image(value="http://thunlp.oss-cn-qingdao.aliyuncs.com/multi_modal/never_delete/m_bear2.gif", label='1. Chat with single or multiple images', interactive=False, width=400, elem_classes="example")
                example2 = gr.Image(value="http://thunlp.oss-cn-qingdao.aliyuncs.com/multi_modal/never_delete/video2.gif", label='2. Chat with video', interactive=False, width=400, elem_classes="example")
                example3 = gr.Image(value="http://thunlp.oss-cn-qingdao.aliyuncs.com/multi_modal/never_delete/fshot.gif", label='3. Few shot', interactive=False, width=400, elem_classes="example")


# 启动WebUI: http://127.0.0.1:8885
demo.launch(share=False, debug=True, show_api=False, server_port=8885, server_name="0.0.0.0")

WebUI 支持 GPU 和苹果 CPU 推理,启动方式分别为:

  • GPU:python web_demo_2.6.py --device cuda
  • 苹果 MPS:PYTORCH_ENABLE_MPS_FALLBACK=1 PYTORCH_MPS_HIGH_WATERMARK_RATIO=0.0 python web_demo_2.6.py --device mps

WebUI启动界面

浏览器打开地址:http://0.0.0.0:8885/ ,可以看到可视化界面:

WebUI对话界面

WebUI 功能支持:自然语言对话、上传图片、上传视频等理解。

终极考验:视频理解体验

老牛同学受限于电脑配置,视频预计推理速度将会极慢,因此不做演示。根据官方代码,视频推理和图片推理类似,代码样例如下:

import torch
from PIL import Image
from modelscope import AutoModel, AutoTokenizer
from decord import VideoReader, cpu

# 模型权重文件目录
model_dir = '.'

# 加载模型:local_files_only 加载本地模型,trust_remote_code 执行远程代码(必须)
model = AutoModel.from_pretrained(
    model_dir,
    local_files_only=True,
    trust_remote_code=True,
)

# 设置推理模式,如果有卡:model = model.eval().cuda()
model = model.eval()

# 加载分词器
tokenizer = AutoTokenizer.from_pretrained(
    model_dir,
    local_files_only=True,
    trust_remote_code=True,
)


MAX_NUM_FRAMES=64

def encode_video(video_path):
    def uniform_sample(l, n):
        gap = len(l) / n
        idxs = [int(i * gap + gap / 2) for i in range(n)]
        return [l[i] for i in idxs]

    vr = VideoReader(video_path, ctx=cpu(0))
    sample_fps = round(vr.get_avg_fps() / 1)  # FPS
    frame_idx = [i for i in range(0, len(vr), sample_fps)]
    if len(frame_idx) > MAX_NUM_FRAMES:
        frame_idx = uniform_sample(frame_idx, MAX_NUM_FRAMES)
    frames = vr.get_batch(frame_idx).asnumpy()
    frames = [Image.fromarray(v.astype('uint8')) for v in frames]
    print('num frames:', len(frames))
    return frames

# 视频文件路径
video_path="~/Car.mp4"

frames = encode_video(video_path)

question = "请问这是一个什么视频?"
msgs = [
    {'role': 'user', 'content': frames + [question]},
]

# Set decode params for video
params={}
params["use_image_id"] = False
params["max_slice_nums"] = 2 # 如果cuda OOM且视频分辨率大于448*448 可设为1

answer = model.chat(
    image=None,
    msgs=msgs,
    tokenizer=tokenizer,
    **params
)

print(answer)

老牛同学在这里,引用了官方的绘制兔子头像的一个视频理解:

|

基于 Qwen2/Lllama3 等大模型,部署团队私有化 RAG 知识库系统的详细教程(Docker+AnythingLLM)

使用 Llama3/Qwen2 等开源大模型,部署团队私有化 Code Copilot 和使用教程

基于 Qwen2 大模型微调技术详细教程(LoRA 参数高效微调和 SwanLab 可视化监控)

LivePortrait 数字人:开源的图生视频模型,本地部署和专业视频制作详细教程

本地部署 GLM-4-9B 清华智谱开源大模型方法和对话效果体验

玩转 AI,笔记本电脑安装属于自己的 Llama 3 8B 大模型和对话客户端

ChatTTS 开源文本转语音模型本地部署、API 使用和搭建 WebUI 界面

Ollama 完整教程:本地 LLM 管理、WebUI 对话、Python/Java 客户端 API 应用

微信公众号:老牛同学

标签:app,MiniCPM,image,多图,model,chat,device,message,2.6
From: https://www.cnblogs.com/obullxl/p/18359973/NTopic2024081401

相关文章

  • 吴恩达深度学习deeplearning.ai学习笔记(二)2.6 2.7 2.8 2.9 2.10
    2.6动量梯度下降法这种算法运行速度总是快于标准的梯度下降算法,基本思想是计算梯度的指数加权平均数并利用该梯度来更新你的权重;假设你要优化一个下图的成本函数,红点是最小值,假设从一点开始进行梯度下降法,如果进行梯度下降法的第一次迭代,无论是batch还是mini-batch,可能都会......
  • kubernetes集群部署postgre 12.6数据库服务
    背景:因业务上线需要,研发中心要求在kubernetes测试集群部署一个postgre12.6的数据库,用于业务功能调试。一、实施部署postgre数据库: 1、拉取postgre12.6的镜像:[root@harbor-02~]#dockerpullregistry.cn-hangzhou.aliyuncs.com/images-speed-up/postgres:12.62017-l......
  • 信呼OA2.6.3文件上传漏洞
    侵权声明本文章中的所有内容(包括但不限于文字、图像和其他媒体)仅供教育和参考目的。如果在本文章中使用了任何受版权保护的材料,我们满怀敬意地承认该内容的版权归原作者所有。如果您是版权持有人,并且认为您的作品被侵犯,请通过以下方式与我们联系:[360619623@qq.com]。我们将在确......
  • 科研软件|亿图图示 EdrawMax 12.6
    亿图图示(EdrawMax)12.6是一款多功能的绘图软件,适用于各种科研、工程、教育和商业领域。它提供了丰富的图表模板和强大的绘图工具,帮助用户创建各类图表,如流程图、网络图、组织结构图、思维导图、平面设计图等。以下是关于亿图图示EdrawMax12.6的一些关键信息和使用指南。###......
  • 【D3.js in Action 3 精译_020】2.6 用 D3 设置与修改元素样式 + 名人专访(Nadieh Brem
    当前内容所在位置第一部分D3.js基础知识第一章D3.js简介(已完结)1.1何为D3.js?1.2D3生态系统——入门须知1.3数据可视化最佳实践(上)1.3数据可视化最佳实践(下)1.4本章小结第二章DOM的操作方法(已完结)2.1第一个D3可视化图表2.2环境准备2.3......
  • FastStone Capture v10.6 解锁版 (一款优秀的支持屏幕录制、滚动截图、高清长图、图片
    前言FastStoneCapture是一款极简主义的应用程序,它简单易用,可以捕捉屏幕上的任意区域,提供多种捕获模式,包括活动窗口、指定窗口/对象、矩形区域、手绘区域、整个屏幕和滚动窗口等。此外,FastStoneCapture还附带屏幕录像机、放大镜、取色器和标尺等辅助功能。其体积小巧,但功能强......
  • SpringBoot2.6.13版本引入Swagger
    1.引入依赖<!--https://mvnrepository.com/artifact/io.springfox/springfox-swagger2--><dependency><groupId>io.springfox</groupId><artifactId>springfox-swagger2</artifactId><version>3.0.0</version&g......
  • Golang 依赖注入设计哲学|12.6K 的依赖注入库 wire
    一、前言线上项目往往依赖非常多的具备特定能力的资源,如:DB、MQ、各种中间件,以及随着项目业务的复杂化,单一项目内,业务模块也逐渐增多,如何高效、整洁管理各种资源十分重要。本文从“术”层面,讲述“依赖注入”的实现,带你体会其对于整洁架构&DDD等设计思想的落地,起到的支撑作用。......
  • Volatility2.6的使用
    Volatility2.6的使用-h:查看帮助-f:指定镜像imageinfo:获取当前内存镜像基本信息–profile:指定镜像对应系统相关命令后接参数:-p:指定PID-Q:指定内存地址-D/–dump-dir:指定导出目录-o:指定注册表的virtual地址volatility-f镜像参数命令示例:volatility-fXXX.raw--profil......
  • WhaleStudio 2.6正式发布,WhaleTunnel同步性能与连接器数量再创新高!
    在这个数据驱动的大模型时代,数据集成的作用和意义愈发重要。数据不仅仅是信息的载体,更是推动企业决策和创新的关键因素。作为全球最流行的批流一体数据集成工具,WhaleTunnel随着WhaleStudio2.6版本正式发布,带来了多项功能增强和新特性,性能大幅提升,连接器和功能方面也有大量更新......