前言
在软件开发中,希尔排序对于一些软件开发工程师可能会有点陌生,或者说不常用,但是希尔算法真的是一种比较经典的算法之一,那么本节就来说说这个希尔排序。
希尔排序概念
希尔排序(Shell Sort)是插入排序的一种,也称缩小增量排序,是直接插入排序算法的一种更高效的改进版本。希尔排序是非稳定排序算法,该方法因DL.Shell于1959年提出而得名。
希尔排序是把记录按下标的一定增量分组,对每组使用直接插入排序算法排序;随着增量逐渐减少,每组包含的关键词越来越多,当增量减至1时,整个文件恰被分成一组,算法便终止。
希尔排序其实就是把记录按步长 gap 分组,对每组记录采用直接插入排序方法进行排序。随着步长逐渐减小,所分成的组包含的记录越来越多,当步长的值减小到1时,整个数据合成为一组,构成一组有序记录,则完成排序。
算法分解
初始时,有一个大小为10的无序序列。在第一趟排序中,我们不妨设 gap1 = N / 2 = 5,即相隔距离为5的元素组成一组,可以分为5组。接下来,按照直接插入排序的方法对每个组进行排序。
在第二趟排序中,我们把上次的 gap 缩小一半,即 gap2 = gap1 / 2 = 2 (取整数)。这样每相隔距离为2的元素组成一组,可以分为2组。按照直接插入排序的方法对每个组进行排序。
在第三趟排序中,再次把 gap 缩小一半,即gap3 = gap2 / 2 = 1。 这样相隔距离为1的元素组成一组,即只有一组。按照直接插入排序的方法对每个组进行排序。此时,排序已经结束。
需要注意一下的是,图中有两个相等数值的元素5和5 。我们可以清楚的看到,在排序过程中,两个元素位置交换了。所以,希尔排序是不稳定的算法。
算法分析
步长的选择是希尔排序的重要部分。只要最终步长为1任何步长序列都可以工作。算法最开始以一定的步长进行排序。然后会继续以一定步长进行排序,最终算法以步长为1进行排序。当步长为1时,算法变为插入排序,这就保证了数据一定会被排序。
Donald Shell 最初建议步长选择为N/2并且对步长取半直到步长达到1。虽然这样取可以比O(N2)类的算法(插入排序)更好,但这样仍然有减少平均时间和最差时间的余地。可能希尔排序最重要的地方在于当用较小步长排序后,以前用的较大步长仍然是有序的。比如,如果一个数列以步长5进行了排序然后再以步长3进行排序,那么该数列不仅是以步长3有序,而且是以步长5有序。如果不是这样,那么算法在迭代过程中会打乱以前的顺序,那就不会以如此短的时间完成排序了。
直接插入排序和希尔排序的比较
直接插入排序是稳定的;而希尔排序是不稳定的。直接插入排序更适合于原始记录基本有序的集合。希尔排序的比较次数和移动次数都要比直接插入排序少,当N越大时,效果越明显。 在希尔排序中,增量序列gap的取法必须满足:最后一个步长必须是 1 。 直接插入排序也适用于链式存储结构;希尔排序不适用于链式结构。
最后
以上就是在逻辑知识: 希尔排序的知识点,关于该逻辑知识就讲到这里,这里就不再赘述。以上就是本章全部内容,欢迎关注三掌柜的微信公众号“程序猿by三掌柜”,三掌柜的新浪微博“三掌柜666”,欢迎关注!