首页 > 其他分享 >设计模式 - Singleton pattern 单例模式

设计模式 - Singleton pattern 单例模式

时间:2024-08-03 23:53:10浏览次数:20  
标签:Singleton getInstance pattern instance 实例 线程 单例 设计模式 public

文章目录

定义

在这里插入图片描述

单例模式是一种创建型设计模式,它用来保证一个类只有一个实例, 并且提供一个访问该实例的全局节点。其在很多场景中都有应用,比如数据库连接池、日志记录器、Spring中对象的创建等。

总的来说,单例模式在需要控制实例数量、确保全局唯一性的场景中被广泛应用。单例模式通过限制类的实例化对象为一个,可以确保全局唯一性的场景中被广泛应用,从而有助于控制资源访问、简化全局访问点、减少内存占用等,在很多情况下都可以提升程序的运行效率。

单例模式的实现构成

构成

一个私有的构造函数、一个私有的静态变量以及一个共有的静态函数。

其中,私有构造函数保证了其他线程不能通过new来创建对象实例,而共有的静态函数则是用来后续所有对此函数的调用都返回唯一的私有静态变量。

UML图

在这里插入图片描述

单例模式的六种实现

懒汉式-线程不安全

下面实现中,instance 被延迟实例化,这样的话,当没有使用到这个类的话,就会节约资源,不会实例化 LazySingletonsAreNotSafe

但是该实现是线程不安全的,因为在多线程环境下,可以有多个线程同时进入 getInstance 方法,并且这个时候 instance 还未实例化,那么它们就都可以进入到 if 逻辑中,执行实例化操作,从而导致线程不安全问题。

public class LazySingletonsAreNotSafe {
    private static LazySingletonsAreNotSafe instance;

    private LazySingletonsAreNotSafe() {}

    public static LazySingletonsAreNotSafe getInstance() {
        if (instance == null) {
            instance = new LazySingletonsAreNotSafe();
        }
        return instance;
    }
}

懒汉式-线程安全

那么,如何可以保证线程安全呢?

其实,上一个实现方式中,线程不安全就是因为 instance 的实例化被执行了很多次,所以我们只要对 getInstance 方法进行加锁,保证同一个时间点只有一个线程可以进入该方法进行实例化操作,那么就保证了线程安全问题。
实现代码如下:

public class LazySingletonsAreSafe {
    private static LazySingletonsAreSafe instance;

    private LazySingletonsAreSafe() {}

	// 关键点:synchronized进行了加锁操作,从而保证线程安全。
    public static synchronized LazySingletonsAreSafe getInstance() {
        if (instance == null) {
            instance = new LazySingletonsAreSafe();
        }
        return instance;
    }
}

饿汉式-线程安全

对于懒汉式方法,如果不加锁会导致线程安全问题,而加锁虽然会保证线程安全,但是也带来了一定程度上的性能损耗,因此可以采用饿汉式。
懒汉式线程安全问题的原因是 getInstance 方法可能被执行多次,从而导致被实例化多次。所以我们采用在类加载的时候,直接实例化 instance ,这样就会避免实例化多次的问题。

当然,因为我们一开始在类加载的时候对象就被实例化了,所以也不会有延迟实例化种可以节约资源的优点。

public class EagerSingleton {
    private static final EagerSingleton instance = new EagerSingleton();

    private EagerSingleton() {}

    public static EagerSingleton getInstance() {
        return instance;
    }
}

双重校验锁-线程安全

双重校验锁先判断 uniqueInstance 是否已经被实例化,如果没有被实例化,那么才对实例化语句进行加锁。

public class DoubleCheckedLockingSingleton {
	// 注意:volatile 修饰
    private static volatile DoubleCheckedLockingSingleton instance;

    private DoubleCheckedLockingSingleton() {}

    public static DoubleCheckedLockingSingleton getInstance() {
        if (instance == null) {
            synchronized (DoubleCheckedLockingSingleton.class) {
                if (instance == null) {
                    instance = new DoubleCheckedLockingSingleton();
                }
            }
        }
        return instance;
    }
}

问题1: 为什么两个if?

if (instance == null) {
     synchronized (DoubleCheckedLockingSingleton.class) {
         if (instance == null) {
             instance = new DoubleCheckedLockingSingleton();
         }
     }
 }

第一个if是因为:高并发场景下,还是可能有不止一个线程成功的在 instance 还未初始化的时候就进入这里了,所以他们都会走下面的逻辑,所以加了一把锁,用来保证线程安全问题。
而第二个if则是因为:等到第一个线程执行完实例化之后,它会释放锁,这样的话下一个线程就会来拿这把锁,然后进行新一轮的实例化。所以,在锁里添加了第二个if用来进行判断,避免实例化多次。

问题2: 为什么 instancevolatile 进行修饰?

private static volatile DoubleCheckedLockingSingleton instance;

这个是因为 volatile 有禁止指令重排的功能。上述代码中单例对象有的时候可能会发生空指针异常的问题。

对于instance = new DoubleCheckedLockingSingleton(); 它其实是分为三个步骤来执行的:

  1. JVM为对象分配内存
  2. 在内存中进行对象的初始化
  3. 将内存对应的地址复制给instance

假设,现在有两个线程进入到了getInstance方法,当T1线程执行实例化操作时,T2线程在进行判断。

因为instance = new DoubleCheckedLockingSingleton();操作不是原子的,所以编译器可能会进行指令的重排序,即:

  1. JVM为对象分配内存
  2. 将内存对应的地址复制给instance
  3. 在内存中进行对象的初始化

这样的话,当T1线程执行完第二步地址复制给instance的时候,T2线程去进行判断,那么instance == null则是为true,所以会直接跳到最下面 return instance。从而导致空指针问题。

volatile可以避免指令重排,所以只要用volatile修饰instance就可以避免这个问题了。
在这里插入图片描述

静态内部类实现

BillPughSingleton 类加载时,静态内部类 SingletonHolder 没有被加载进内存。只有当调用 getUniqueInstance 方法从而触发 SingletonHolder.INSTANCESingletonHolder才会被加载,进行初始化。

public class BillPughSingleton {
    private BillPughSingleton() {}

    private static class SingletonHelper {
        private static final BillPughSingleton INSTANCE = new BillPughSingleton();
    }

    public static BillPughSingleton getInstance() {
        return SingletonHelper.INSTANCE;
    }
}

枚举实现

枚举实例的创建是线程安全的,而且在任何情况下都是它一个单例。在别的几种单例中,反序列化时会重新创建对象,而枚举单例则不存在这种情况。

public enum EnumSingleton {
    INSTANCE;

    public void someMethod() {
    }
}

总结

      
1. 饿汉式

    实现:在类加载时就完成了实例化。
    特点:线程安全,实现简单;但可能会造成资源浪费,因为即使不需要使用实例,也会在类加载时创建。
      
2. 懒汉式

    实现:在第一次调用 getInstance() 方法时进行实例化。
    特点:延迟加载,节省资源;但需要在 getInstance() 方法上加锁才可以保证线程安全,会影响性能。
      
3. 双重校验锁

    实现:在 getInstance() 方法中加入两次实例检查,第二次检查前加上锁,既保证了线程安全又提高了效率。
    特点:结合了懒汉式和饿汉式的优点,既实现了延迟加载,又优化了并发性能。
      
4. 静态内部类

    实现:将单例实例放在静态内部类中,当外部类被加载时静态内部类并不会被加载,只有在首次调用 getInstance() 方法时才会加载。
    特点:既实现了延迟加载,又保证了线程安全,且不需显式同步。
      
5. 枚举

    实现:利用枚举类型的特性来保证实例的唯一性。
    特点:线程安全,简洁易读,还能防止反序列化攻击。

其他设计模式文章:

最后

如果小伙伴们觉得我写的文章不错的话,那么请给我点点关注,我们下次见!
      在这里插入图片描述

标签:Singleton,getInstance,pattern,instance,实例,线程,单例,设计模式,public
From: https://blog.csdn.net/WLKQNYJY_SHT/article/details/140899199

相关文章

  • 程序员进阶架构知识体系、开发运维工具使用、Java体系知识扩展、前后端分离流程详解、
    场景作为一名开发者,势必经历过从入门到自学、从基础到进阶、从学习到强化的过程。当经历过几年企业级开发的磨炼,再回头看之前的开发过程、成长阶段发现确实是走了好多的弯路。作为一名终身学习的信奉者,秉承持续学习、持续优化的信念。不惜耗费无数个日日夜夜,耗费大量时间精力......
  • 单例设计模式的懒汉式和饿汉式以及它们的区别
    单例模式:也叫单子模式,属于“创建模式”一个类只有一个实例,并且自行实例化并向整个系统提供这个实例,这个类称为单例类。单例类一个最重要的特点:类的构造方法是私有的。何时使用:系统全局有且只有一个实例。单例模式的懒汉式:publicclassSingle{//需要将变量定义成......
  • 从扫描的 pdf 中提取设计模式
    我有一份大约650页的扫描版pdf。每页都包含一些图案(花朵、几何图案等)。我的目标是从pdf中提取这些模式。供您参考,这是pdf中的一页我当前的解决方案涉及使用opencv检测轮廓并提取图案。但是,该解决方案并不能处理所有情况。该pdf每页包含不同数量的图像,并且......
  • 设计模式-适配器模式( Adapter Pattern)
    设计模式-适配器模式(AdapterPattern)  概要   记忆关键词:转换,兼容接口  定义:将一个类的接口转换成客户希望的另外一个接口,适配器模式使得原本由于接口不兼容而不能一起工作的那些类可以一起工作。  分析:在适配器模式中,Cilent调用Adapter以获得相应功能,Adapter扩......
  • 设计模式-外观模式(Facade)
    设计模式-外观模式(Facade)  概要   记忆关键词:对外统一接口  定义:为了是复杂的子系统更容易被使用,应当为子系统的众多接口提供一个简洁的高层接口。  分析:外观模式是一种结构型模式,它为子系统的众多接口提供了统一的高层接口,是子系统更容易使用。  外观模式结......
  • STL and Design Pattern
    DesignPatterns[TODO]0x01.依赖转置原则ref1例如人吃巧克力:publicinterfaceIChocolates{}publicclassOreoimplementsIChocolates{}publicclassDoveimplementsIChocolates{}publicinterfacePerson{voideat(IChocolateschocolates);}上面的例子......
  • 设计模式 单例模式
    双重检查锁packagecom.fh.design_mode.singleton.double_check_lock;importlombok.SneakyThrows;importjava.util.concurrent.TimeUnit;/***双重检查锁*/publicclassSingletonTest{publicstaticvoidmain(String[]args){for(inti=1;i......
  • 设计模式 - 简单工厂模式(Simple Factory Pattern)
    设计模式-简单工厂模式(SimpleFactoryPattern)  概要  记忆关键字:工厂类创建对象  定义:通过工厂类创建对象,并且根据传入参数决定具体子类对象的做法,就是简单工厂模式  分析:如果一个类的实例需要在许多地方被创建和初始化,而初始化的代码也比较复杂。此时可以考虑......
  • Pattern的使用与Matcher正则表达式的使用。
    Pattern的使用在Java中,java.util.regex.Pattern类用于表示正则表达式的编译表示。正则表达式是一种强大的模式匹配工具,它可以用于搜索、替换和解析字符串。以下是一些常见的正则表达式匹配规则:普通字符:大多数字符都是普通字符,它们匹配自身。例如,正则表达式abc将匹配字符串......
  • 【设计模式】代理模式详解
    1.简介代理模式是常用的Java设计模式,该模式的特点是代理类与委托类共享相同的接口。代理类主要负责预处理消息、过滤消息、将消息转发给委托类,并在事后处理消息等。代理类与委托类之间通常存在关联关系,一个代理类对象与一个委托类对象关联。代理类对象本身不真正实现服务,而......