1 Albumentations库介绍
一个好用的开源图像处理库,适用于对RGB、灰度图、多光谱图像,以及对应的mask、边界框和关键点同时变换。通常用于数据增广,是PyTorch生态系统的一部分。
2 核心点
支持的变换:https://albumentations.ai/docs/getting_started/transforms_and_targets/
- 分为两类:pixel-level transforms 和 spatial-level transforms. 前者像素级变换,mask等不需要动;后者mask同步变换;
变换概率:https://albumentations.ai/docs/getting_started/setting_probabilities/
- 每种变换都有一个参数p,来控制应用这个变换的概率;
- 有的变换默认p为1,而有的默认为0.5;
- 如果有嵌套,比如Compose、OneOf、GaussNoise等,概率相乘;
- 对于OneOf里面的各个变换概率,会被归一化;
捕获变换的参数:https://albumentations.ai/docs/examples/replay/
- 用replay可以捕获变换的参数,从而用到多张图上;
- 也可以用来debug;
多张图片同步变换,比如多张图对应同一个mask,或者一张图对应多个mask:https://albumentations.ai/docs/examples/example_multi_target/
3 代码示例
3.1 测试代码
适用于在本地测试各个变换的实际效果。
import random
import cv2
from matplotlib import pyplot as plt
import albumentations as A
## 可视化变换前后图像和对应mask
def visualize(image, mask, original_image=None, original_mask=None):
fontsize = 14
if original_image is None and original_mask is None:
f, ax = plt.subplots(2, 1, figsize=(8, 5))
ax[0].imshow(image, cmap=plt.cm.gray)
ax[1].imshow(mask, cmap=plt.cm.gray)
else:
f, ax = plt.subplots(2, 2, figsize=(8, 5))
ax[0, 0].imshow(original_image, cmap=plt.cm.gray)
ax[0, 0].set_title('Original image', fontsize=fontsize)
ax[1, 0].imshow(original_mask, cmap=plt.cm.gray)
ax[1, 0].set_title('Original mask', fontsize=fontsize)
ax[0, 1].imshow(image, cmap=plt.cm.gray)
ax[0, 1].set_title('Transformed image', fontsize=fontsize)
ax[1, 1].imshow(mask, cmap=plt.cm.gray)
ax[1, 1].set_title('Transformed mask', fontsize=fontsize)
image = cv2.imread(r"D:\samples\0000.png", cv2.IMREAD_GRAYSCALE)
mask = cv2.imread(r"D:\samples\0000_mask.png", cv2.IMREAD_GRAYSCALE)
## 变换示例1:pixel-level transforms,mask不变
# aug = A.RandomGamma(p=1, gamma_limit=(60, 90))
# aug = A.RandomBrightnessContrast(p=1, brightness_limit=(-0.1, 0.2), contrast_limit=(-0.4, 0.4))
# aug = A.CLAHE(p=1, clip_limit=2.0, tile_grid_size=(4, 4))
# aug = A.MotionBlur(p=1, blur_limit=5)
# aug = A.GlassBlur(p=1, sigma=0.05, max_delta=1, iterations=1)
# aug = A.GaussianBlur(p=1, blur_limit=(1, 3))
## 变换示例2:spatial-level transforms
# aug = A.ElasticTransform(p=1, alpha=80, sigma=8, alpha_affine=10)
# aug = A.GridDistortion(p=1, num_steps=5, distort_limit=(-0.3, 0.3))
# aug = A.OpticalDistortion(distort_limit=1, shift_limit=1, p=1)
# aug = A.RandomResizedCrop(size=(120,248), scale=(0.5,1.0), ratio=(1.8,2.4), p=1)
# aug = A.Affine(p=1, scale=(0.9,1.1), translate_percent=None, shear=(-20, 20), rotate=(-40,40))
aug = A.Perspective(p=1, scale=(0.05, 0.3))
random.seed(9) #固定种子便于复现,实际使用时注掉
augmented = aug(image=image, mask=mask)
image_elastic = augmented['image']
mask_elastic = augmented['mask']
print(f"image_elastic.shape {image_elastic.shape}")
print(f"mask_elastic.shape {mask_elastic.shape}")
visualize(image_elastic, mask_elastic, original_image=image, original_mask=mask)
3.2 实际使用代码
适用于嵌入Pytorch的dataloader,用于数据增广。
- 里面HorizontalFlip变换发生概率为 0.9 * 0.5;
- 第一个OneOf中RandomGamma变换发生概率为 0.9 * 0.6 * (1 / (1+2+1));
# Define the transformations
self.transform = A.Compose([
A.OneOf([
A.RandomGamma(p=1, gamma_limit=(60, 90)),
A.RandomBrightnessContrast(p=2, brightness_limit=(-0.1, 0.2), contrast_limit=(-0.4, 0.4)),
A.CLAHE(p=1, clip_limit=2.0, tile_grid_size=(4, 4))
], p=0.6),
A.OneOf([
A.MotionBlur(p=1, blur_limit=5),
A.GlassBlur(p=1, sigma=0.05, max_delta=1, iterations=1),
A.GaussianBlur(p=1, blur_limit=(1, 3))
], p=0.6),
A.HorizontalFlip(p=0.5),
A.Affine(p=0.6, scale=(0.9,1.1), translate_percent=None, shear=(-10, 10), rotate=(-30,30)),
A.RandomResizedCrop(p=0.6, size=(120,248), scale=(0.6,1.0), ratio=(1.9,2.3)),
A.Perspective(p=0.8, scale=(0.05, 0.3)),
], p=0.9, additional_targets={'image0': 'image'})
#训练时进行数据增广
if self.train:
transformed = self.transform(image=data['ir'],
image0=datax['speckle'],
mask=data['gt'])
data['ir'] = transformed['image']
data['speckle'] = transformed['image0']
data['gt'] = transformed['mask']
标签:Albumentations,aug,变换,image,mask,limit,使用,ax
From: https://www.cnblogs.com/inchbyinch/p/18335626