import torch from torch.autograd import Function import torch.onnx # Step 1: Define custom PyTorch operator class MyCustomOp(Function): @staticmethod def forward(ctx, input): return input + 1 @staticmethod def symbolic(g, input): return g.op("CustomAddOne", input)#注意此处的input参数要和后面trt中的插件层一样 def custom_add_one(input): return MyCustomOp.apply(input) # Step 2: Register custom ONNX operator def custom_add_one_symbolic(g, input): return g.op("CustomAddOne", input) torch.onnx.register_custom_op_symbolic("::custom_add_one", custom_add_one_symbolic, 9) # Step 3: Export to ONNX class MyModel(torch.nn.Module): def forward(self, x): return custom_add_one(x) model = MyModel() dummy_input = torch.randn(1, 3, 224, 224) torch.onnx.export(model, dummy_input, "custom_model.onnx", opset_version=9, custom_opsets={"": 9}) print("ONNX model with custom operator exported successfully.")
标签:return,自定义,onnx,torch,add,custom,pytorch,input From: https://www.cnblogs.com/chentiao/p/18328600