定义LSTM神经网络模型
class LSTM(nn.Module):
"""
Parameters:
- input_size: 输入特征数
- hidden_size: 单个隐藏层的节点数
- output_size: 输出特征数
- num_layers: 隐藏层数
"""
def __init__(self, input_size=1, hidden_size=1, output_size=1, num_layers=1):
super().__init__()
self.input_size = input_size
self.hidden_size = hidden_size
self.num_layers = num_layers
self.output_size = output_size
self.lstm = nn.LSTM(input_size, hidden_size, num_layers)
self.forwardCalculation = nn.Linear(hidden_size, output_size)
self.hidden_cell = (torch.zeros(self.num_layers,self.output_size,self.hidden_size),
torch.zeros(self.num_layers,self.output_size,self.hidden_size))
def forward(self, input_seq):
L = len(input_seq)
lstm_out, self.hidden_cell = self.lstm(input_seq.view(L, 1, -1),self.hidden_cell)
predictions = self.forwardCalculation(lstm_out.view(len(input_seq), -1))
return predictions[-1]
标签:layers,定义,模型,self,num,input,LSTM,hidden,size
From: https://www.cnblogs.com/conpi/p/18315367