残差
1通常2D像素对3D点位姿和点
2 但是这个里面没有2D像素,是单纯的3D点对3D点位姿求解
CMakeLists.txt
cmake_minimum_required(VERSION 2.8) project(vo1) set(CMAKE_BUILD_TYPE "Release") add_definitions("-DENABLE_SSE") set(CMAKE_CXX_FLAGS "-std=c++11 -O2 ${SSE_FLAGS} -msse4") list(APPEND CMAKE_MODULE_PATH ${PROJECT_SOURCE_DIR}/cmake) find_package(OpenCV 3 REQUIRED) find_package(G2O REQUIRED) find_package(Sophus REQUIRED) include_directories( ${OpenCV_INCLUDE_DIRS} ${G2O_INCLUDE_DIRS} ${Sophus_INCLUDE_DIRS} "/usr/include/eigen3/" ) add_executable(orb_cv orb_cv.cpp) target_link_libraries(orb_cv ${OpenCV_LIBS}) add_executable(orb_self orb_self.cpp) target_link_libraries(orb_self ${OpenCV_LIBS}) # add_executable( pose_estimation_2d2d pose_estimation_2d2d.cpp extra.cpp ) # use this if in OpenCV2 add_executable(pose_estimation_2d2d pose_estimation_2d2d.cpp) target_link_libraries(pose_estimation_2d2d ${OpenCV_LIBS}) # # add_executable( triangulation triangulation.cpp extra.cpp) # use this if in opencv2 add_executable(triangulation triangulation.cpp) target_link_libraries(triangulation ${OpenCV_LIBS}) add_executable(pose_estimation_3d2d pose_estimation_3d2d.cpp) target_link_libraries(pose_estimation_3d2d g2o_core g2o_stuff ${OpenCV_LIBS}) add_executable(pose_estimation_3d3d pose_estimation_3d3d.cpp) target_link_libraries(pose_estimation_3d3d g2o_core g2o_stuff ${OpenCV_LIBS})
mian
#include <iostream> #include <opencv2/core/core.hpp> #include <opencv2/features2d/features2d.hpp> #include <opencv2/highgui/highgui.hpp> #include <opencv2/calib3d/calib3d.hpp> #include <Eigen/Core> #include <Eigen/Dense> #include <Eigen/Geometry> #include <Eigen/SVD> #include <g2o/core/base_vertex.h> #include <g2o/core/base_unary_edge.h> #include <g2o/core/block_solver.h> #include <g2o/core/optimization_algorithm_gauss_newton.h> #include <g2o/core/optimization_algorithm_levenberg.h> #include <g2o/solvers/dense/linear_solver_dense.h> #include <chrono> #include <sophus/se3.hpp> using namespace std; using namespace cv; void find_feature_matches( const Mat &img_1, const Mat &img_2, std::vector<KeyPoint> &keypoints_1, std::vector<KeyPoint> &keypoints_2, std::vector<DMatch> &matches); // 像素坐标转相机归一化坐标 Point2d pixel2cam(const Point2d &p, const Mat &K); void pose_estimation_3d3d( const vector<Point3f> &pts1, const vector<Point3f> &pts2, Mat &R, Mat &t ); void bundleAdjustment( const vector<Point3f> &points_3d, const vector<Point3f> &points_2d, Mat &R, Mat &t ); /// vertex and edges used in g2o ba class VertexPose : public g2o::BaseVertex<6, Sophus::SE3d> { public: EIGEN_MAKE_ALIGNED_OPERATOR_NEW; virtual void setToOriginImpl() override { _estimate = Sophus::SE3d(); } /// left multiplication on SE3 virtual void oplusImpl(const double *update) override { Eigen::Matrix<double, 6, 1> update_eigen; update_eigen << update[0], update[1], update[2], update[3], update[4], update[5]; _estimate = Sophus::SE3d::exp(update_eigen) * _estimate; } virtual bool read(istream &in) override {} virtual bool write(ostream &out) const override {} }; /// g2o edge class EdgeProjectXYZRGBDPoseOnly : public g2o::BaseUnaryEdge<3, Eigen::Vector3d, VertexPose> { public: EIGEN_MAKE_ALIGNED_OPERATOR_NEW; EdgeProjectXYZRGBDPoseOnly(const Eigen::Vector3d &point) : _point(point) {} virtual void computeError() override { const VertexPose *pose = static_cast<const VertexPose *> ( _vertices[0] ); _error = _measurement - pose->estimate() * _point; } virtual void linearizeOplus() override { VertexPose *pose = static_cast<VertexPose *>(_vertices[0]); Sophus::SE3d T = pose->estimate(); Eigen::Vector3d xyz_trans = T * _point; _jacobianOplusXi.block<3, 3>(0, 0) = -Eigen::Matrix3d::Identity(); _jacobianOplusXi.block<3, 3>(0, 3) = Sophus::SO3d::hat(xyz_trans); } bool read(istream &in) {} bool write(ostream &out) const {} protected: Eigen::Vector3d _point; }; int main(int argc, char **argv) { if (argc != 5) { cout << "usage: pose_estimation_3d3d img1 img2 depth1 depth2" << endl; return 1; } //-- 读取图像 Mat img_1 = imread(argv[1], CV_LOAD_IMAGE_COLOR); Mat img_2 = imread(argv[2], CV_LOAD_IMAGE_COLOR); vector<KeyPoint> keypoints_1, keypoints_2; vector<DMatch> matches; find_feature_matches(img_1, img_2, keypoints_1, keypoints_2, matches); cout << "一共找到了" << matches.size() << "组匹配点" << endl; // 建立3D点 Mat depth1 = imread(argv[3], CV_LOAD_IMAGE_UNCHANGED); // 深度图为16位无符号数,单通道图像 Mat depth2 = imread(argv[4], CV_LOAD_IMAGE_UNCHANGED); // 深度图为16位无符号数,单通道图像 Mat K = (Mat_<double>(3, 3) << 520.9, 0, 325.1, 0, 521.0, 249.7, 0, 0, 1); vector<Point3f> pts1, pts2; for (DMatch m:matches) { ushort d1 = depth1.ptr<unsigned short>(int(keypoints_1[m.queryIdx].pt.y))[int(keypoints_1[m.queryIdx].pt.x)]; ushort d2 = depth2.ptr<unsigned short>(int(keypoints_2[m.trainIdx].pt.y))[int(keypoints_2[m.trainIdx].pt.x)]; if (d1 == 0 || d2 == 0) // bad depth continue; Point2d p1 = pixel2cam(keypoints_1[m.queryIdx].pt, K); Point2d p2 = pixel2cam(keypoints_2[m.trainIdx].pt, K); float dd1 = float(d1) / 5000.0; float dd2 = float(d2) / 5000.0; pts1.push_back(Point3f(p1.x * dd1, p1.y * dd1, dd1)); pts2.push_back(Point3f(p2.x * dd2, p2.y * dd2, dd2)); } cout << "3d-3d pairs: " << pts1.size() << endl; Mat R, t; pose_estimation_3d3d(pts1, pts2, R, t); cout << "ICP via SVD results: " << endl; cout << "R = " << R << endl; cout << "t = " << t << endl; cout << "R_inv = " << R.t() << endl; cout << "t_inv = " << -R.t() * t << endl; cout << "calling bundle adjustment" << endl; bundleAdjustment(pts1, pts2, R, t); // verify p1 = R * p2 + t for (int i = 0; i < 5; i++) { cout << "p1 = " << pts1[i] << endl; cout << "p2 = " << pts2[i] << endl; cout << "(R*p2+t) = " << R * (Mat_<double>(3, 1) << pts2[i].x, pts2[i].y, pts2[i].z) + t << endl; cout << endl; } } void find_feature_matches(const Mat &img_1, const Mat &img_2, std::vector<KeyPoint> &keypoints_1, std::vector<KeyPoint> &keypoints_2, std::vector<DMatch> &matches) { //-- 初始化 Mat descriptors_1, descriptors_2; // used in OpenCV3 Ptr<FeatureDetector> detector = ORB::create(); Ptr<DescriptorExtractor> descriptor = ORB::create(); // use this if you are in OpenCV2 // Ptr<FeatureDetector> detector = FeatureDetector::create ( "ORB" ); // Ptr<DescriptorExtractor> descriptor = DescriptorExtractor::create ( "ORB" ); Ptr<DescriptorMatcher> matcher = DescriptorMatcher::create("BruteForce-Hamming"); //-- 第一步:检测 Oriented FAST 角点位置 detector->detect(img_1, keypoints_1); detector->detect(img_2, keypoints_2); //-- 第二步:根据角点位置计算 BRIEF 描述子 descriptor->compute(img_1, keypoints_1, descriptors_1); descriptor->compute(img_2, keypoints_2, descriptors_2); //-- 第三步:对两幅图像中的BRIEF描述子进行匹配,使用 Hamming 距离 vector<DMatch> match; // BFMatcher matcher ( NORM_HAMMING ); matcher->match(descriptors_1, descriptors_2, match); //-- 第四步:匹配点对筛选 double min_dist = 10000, max_dist = 0; //找出所有匹配之间的最小距离和最大距离, 即是最相似的和最不相似的两组点之间的距离 for (int i = 0; i < descriptors_1.rows; i++) { double dist = match[i].distance; if (dist < min_dist) min_dist = dist; if (dist > max_dist) max_dist = dist; } printf("-- Max dist : %f \n", max_dist); printf("-- Min dist : %f \n", min_dist); //当描述子之间的距离大于两倍的最小距离时,即认为匹配有误.但有时候最小距离会非常小,设置一个经验值30作为下限. for (int i = 0; i < descriptors_1.rows; i++) { if (match[i].distance <= max(2 * min_dist, 30.0)) { matches.push_back(match[i]); } } } Point2d pixel2cam(const Point2d &p, const Mat &K) { return Point2d( (p.x - K.at<double>(0, 2)) / K.at<double>(0, 0), (p.y - K.at<double>(1, 2)) / K.at<double>(1, 1) ); } void pose_estimation_3d3d(const vector<Point3f> &pts1, const vector<Point3f> &pts2, Mat &R, Mat &t) { Point3f p1, p2; // center of mass int N = pts1.size(); for (int i = 0; i < N; i++) { p1 += pts1[i]; p2 += pts2[i]; } p1 = Point3f(Vec3f(p1) / N); p2 = Point3f(Vec3f(p2) / N); vector<Point3f> q1(N), q2(N); // remove the center for (int i = 0; i < N; i++) { q1[i] = pts1[i] - p1; q2[i] = pts2[i] - p2; } // compute q1*q2^T Eigen::Matrix3d W = Eigen::Matrix3d::Zero(); for (int i = 0; i < N; i++) { W += Eigen::Vector3d(q1[i].x, q1[i].y, q1[i].z) * Eigen::Vector3d(q2[i].x, q2[i].y, q2[i].z).transpose(); } cout << "W=" << W << endl; // SVD on W Eigen::JacobiSVD<Eigen::Matrix3d> svd(W, Eigen::ComputeFullU | Eigen::ComputeFullV); Eigen::Matrix3d U = svd.matrixU(); Eigen::Matrix3d V = svd.matrixV(); cout << "U=" << U << endl; cout << "V=" << V << endl; Eigen::Matrix3d R_ = U * (V.transpose()); if (R_.determinant() < 0) { R_ = -R_; } Eigen::Vector3d t_ = Eigen::Vector3d(p1.x, p1.y, p1.z) - R_ * Eigen::Vector3d(p2.x, p2.y, p2.z); // convert to cv::Mat R = (Mat_<double>(3, 3) << R_(0, 0), R_(0, 1), R_(0, 2), R_(1, 0), R_(1, 1), R_(1, 2), R_(2, 0), R_(2, 1), R_(2, 2) ); t = (Mat_<double>(3, 1) << t_(0, 0), t_(1, 0), t_(2, 0)); } void bundleAdjustment( const vector<Point3f> &pts1, const vector<Point3f> &pts2, Mat &R, Mat &t) { // 构建图优化,先设定g2o typedef g2o::BlockSolverX BlockSolverType; typedef g2o::LinearSolverDense<BlockSolverType::PoseMatrixType> LinearSolverType; // 线性求解器类型 // 梯度下降方法,可以从GN, LM, DogLeg 中选 auto solver = new g2o::OptimizationAlgorithmLevenberg( g2o::make_unique<BlockSolverType>(g2o::make_unique<LinearSolverType>())); g2o::SparseOptimizer optimizer; // 图模型 optimizer.setAlgorithm(solver); // 设置求解器 optimizer.setVerbose(true); // 打开调试输出 // vertex VertexPose *pose = new VertexPose(); // camera pose R t pose->setId(0); pose->setEstimate(Sophus::SE3d()); optimizer.addVertex(pose); // edges for (size_t i = 0; i < pts1.size(); i++) { EdgeProjectXYZRGBDPoseOnly *edge = new EdgeProjectXYZRGBDPoseOnly(Eigen::Vector3d(pts2[i].x, pts2[i].y, pts2[i].z)); edge->setVertex(0, pose); edge->setMeasurement(Eigen::Vector3d(pts1[i].x, pts1[i].y, pts1[i].z)); edge->setInformation(Eigen::Matrix3d::Identity()); optimizer.addEdge(edge); } chrono::steady_clock::time_point t1 = chrono::steady_clock::now(); optimizer.initializeOptimization(); optimizer.optimize(10); chrono::steady_clock::time_point t2 = chrono::steady_clock::now(); chrono::duration<double> time_used = chrono::duration_cast<chrono::duration<double>>(t2 - t1); cout << "optimization costs time: " << time_used.count() << " seconds." << endl; cout << endl << "after optimization:" << endl; cout << "T=\n" << pose->estimate().matrix() << endl; = // convert to cv::Mat Eigen::Matrix3d R_ = pose->estimate().rotationMatrix(); Eigen::Vector3d t_ = pose->estimate().translation(); R = (Mat_<double>(3, 3) << R_(0, 0), R_(0, 1), R_(0, 2), R_(1, 0), R_(1, 1), R_(1, 2), R_(2, 0), R_(2, 1), R_(2, 2) ); t = (Mat_<double>(3, 1) << t_(0, 0), t_(1, 0), t_(2, 0)); }
标签:dist,Eigen,求解,pose,keypoints,const,位姿,include,3D From: https://www.cnblogs.com/gooutlook/p/18313290