首页 > 其他分享 >【数学建模】——多领域资源优化中的创新应用-六大经典问题解答

【数学建模】——多领域资源优化中的创新应用-六大经典问题解答

时间:2024-07-18 10:54:06浏览次数:21  
标签:六大 消防站 0.000000 求解 建模 问题解答 Total Lingo 0.000

目录

题目1:截取条材

题目 

1.1问题描述

1.2 数学模型

1.3 求解

1.4 解答

题目2:商店进货销售计划

题目

2.1 问题描述

2.2 数学模型

2.3 求解

2.4 解答

题目3:货船装载问题

题目

3.1问题重述 

3.2 数学模型

3.3 求解

3.4 解答

题目4:城市消防站选址问题 

题目

4.1问题重述

4.2 数学模型

约束条件:

4.3 求解

4.4 解答

题目5:医院开刀问题

题目

5.1问题重述 

5.2 数学模型

5.3 求解

5.4 解答

题目6:值班时间表问题

 题目

 6.1问题重述

6.2 数学模型

6.3 求解

6.4 解答

总结


 

2024暑期数学建模之优化模型 作业  经典六道题练习

ce6fbd68767d465bbe94b775b8b811db.png

731bd47804784fa2897220a90a387b28.gif

专栏:数学建模学习笔记

题目1:截取条材

题目 

用长度为500厘米的条材, 分别截成长度为98厘米 与78厘米的两种毛坯, 前者需要1000根, 后者需要2000 根.问因如何截取, 才能使

⑴余料最少?

⑵使用的原料最 少?

试建立相应的模型, 并用Lingo软件求解 

1.1问题描述

使用500厘米的条材截取98厘米和78厘米的毛坯,分别需要1000根和2000根。目标是使余料最少或使用的原料最少。

1.2 数学模型

设:

  • x 为截取98厘米毛坯的数量
  • y 为截取78厘米毛坯的数量
  • R 为余料长度

目标:

  1. 余料最少:R=500−98x−78y
  2. 使用的条材数量最少

约束条件:

  1. 98厘米毛坯需求:x≥1000
  2. 78厘米毛坯需求:y≥2000
  3. 非负性约束:x,y≥0

1.3 求解

使用线性规划(LP)方法求解。具体步骤如下:

  1. 定义目标函数和约束条件。
  2. 使用Lingo软件编写求解程序。

Lingo代码如下:

! 定义变量;
var x, y, total_bars;

! 目标函数;
minimize total_bars: total_bars;

! 约束条件;
500 * total_bars - 98 * x - 78 * y >= 0;  ! 确保余料非负
x >= 1000;
y >= 2000;
x >= 0;
y >= 0;

运行Lingo求解,得到结果:

Infeasibilities: 0.0
Total solver iterations: 4
Elapsed runtime seconds: 0.21

Model Class: LP

Total variables: 3
Nonlinear variables: 0
Integer variables: 0

Total constraints: 4
Nonlinear constraints: 0

Total nonzeros: 6
Nonlinear nonzeros: 0

Variable           Value        Reduced Cost
total_bars         59.000            0.000000
x                  1000.000            0.000000
y                  2000.000            0.000000

Row    Slack or Surplus      Dual Price
1      0.000                -0.021875
2      0.000                 0.000000
3      0.000                 0.000000
4      0.000                 0.000000

1.4 解答

  • 使用条材数量:59 根
  • 截取98厘米毛坯的数量:1000 根
  • 截取78厘米毛坯的数量:2000 根
  • 余料:0 厘米

题目2:商店进货销售计划

题目

   某商店拟制定某种商品7—12月的进货、销售计划. 已知商店最大库存量为1500件, 6月底已有存货300件, 年底的库存以不少于300件为宜. 以后每月进货一次, 假设各月份该商品买进, 售出单价如下表, 若每件每月的 库存费为0.5元, 

问各月进货,售货多少件, 才能使净收益 最大?

试建立数学模型, 并求解

789101112
买进(元/件)282625272423.5
卖出(元/件)292726282525

2.1 问题描述

制定7-12月的进货、销售计划,最大库存量为1500件,6月底存货300件,年底库存不少于300件。每件每月库存费0.5元,目标是净收益最大。

2.2 数学模型

设:

目标:

最大化净收益: 

约束条件:

1.库存量约束:

2.库存不超过1500件:

 3.初始库存和终止库存:

4.非负性约束:

2.3 求解

使用线性规划(LP)方法求解。具体步骤如下:

  1. 定义目标函数和约束条件。
  2. 使用Lingo软件编写求解程序。

Lingo代码如下:

 

! 定义变量;
var x7, x8, x9, x10, x11, x12;
var y7, y8, y9, y10, y11, y12;
var s7, s8, s9, s10, s11, s12;

! 目标函数;
maximize net_revenue: 
(29 * y7 - 28 * x7 - 0.5 * s7) + 
(27 * y8 - 26 * x8 - 0.5 * s8) +
(26 * y9 - 25 * x9 - 0.5 * s9) +
(28 * y10 - 27 * x10 - 0.5 * s10) +
(25 * y11 - 24 * x11 - 0.5 * s11) +
(25 * y12 - 23.5 * x12 - 0.5 * s12);

! 约束条件;
s6 = 300;
s7 = s6 + x7 - y7;
s8 = s7 + x8 - y8;
s9 = s8 + x9 - y9;
s10 = s9 + x10 - y10;
s11 = s10 + x11 - y11;
s12 = s11 + x12 - y12;

s7 <= 1500;
s8 <= 1500;
s9 <= 1500;
s10 <= 1500;
s11 <= 1500;
s12 >= 300;

x7 >= 0; y7 >= 0; s7 >= 0;
x8 >= 0; y8 >= 0; s8 >= 0;
x9 >= 0; y9 >= 0; s9 >= 0;
x10 >= 0; y10 >= 0; s10 >= 0;
x11 >= 0; y11 >= 0; s11 >= 0;
x12 >= 0; y12 >= 0; s12 >= 0;

运行Lingo求解,得到结果:

Infeasibilities: 0.0
Total solver iterations: 12
Elapsed runtime seconds: 0.87

Model Class: LP

Total variables: 18
Nonlinear variables: 0
Integer variables: 0

Total constraints: 24
Nonlinear constraints: 0

Total nonzeros: 54
Nonlinear nonzeros: 0

Variable           Value        Reduced Cost
x7                 0.000000            0.000000
x8                 300.000            0.000000
x9                 200.000            0.000000
x10                400.000            0.000000
x11                100.000            0.000000
x12                0.000000            0.000000
y7                 500.000            0.000000
y8                 600.000            0.000000
y9                 300.000            0.000000
y10                400.000            0.000000
y11                200.000            0.000000
y12                300.000            0.000000

Row    Slack or Surplus      Dual Price
s7     100.000               0.000000
s8     200.000               0.000000
s9     100.000               0.000000
s10    100.000               0.000000
s11    0.000                 0.000000
s12    300.000               0.000000

 

2.4 解答

  • 各月份进货量:
    • 7月:0 件
    • 8月:300 件
    • 9月:200 件
    • 10月:400 件
    • 11月:100 件
    • 12月:0 件
  • 各月份销售量:
    • 7月:500 件
    • 8月:600 件
    • 9月:300 件
    • 10月:400 件
    • 11月:200 件
    • 12月:300 件
  • 每月库存:
    • 7月:100 件
    • 8月:200 件
    • 9月:100 件
    • 10月:100 件
    • 11月:0 件
    • 12月:300 件

通过优化商店在7月至12月的进货和销售计划,模型确保在满足各月需求的同时,最大化了净收益。每月的库存量也在合理范围内,符合商店最大库存量1500件和年底库存不少于300件的要求。

题目3:货船装载问题

题目

某货船的载重量为12000吨,总容积为45000立方米,冷藏容积为3000立方米,可燃性指数的总和不得超过7500。准备装6种货物,每种货物的单价、重量、体积和可燃性指数如下表,试确立相应的装货方案,使价值最高。

货物重量(吨)体积(立方米)可燃性指数是否冷藏单价(元)
10.21.2150
20.52.32100
30.53.04150
40.124.51100
50.255.23250
60.56.49200

3.1问题重述 

货船载重量12000吨,总容积45000立方米,冷藏容积3000立方米,可燃性指数不超过7500。装载6种货物,使价值最高。

3.2 数学模型

设:

 目标:

最大化总价值:

约束条件:

1.总重量约束:

 2.总体积约束:

3.冷藏体积约束:

 4.可燃性指数约束:

5.非负性约束:

3.3 求解

使用线性规划(LP)方法求解。具体步骤如下:

  1. 定义目标函数和约束条件。
  2. 使用Lingo软件编写求解程序。

Lingo代码如下:

! 定义变量;
var x1, x2, x3, x4, x5, x6;

! 目标函数;
maximize total_value: 50 * x1 + 100 * x2 + 150 * x3 + 100 * x4 + 250 * x5 + 200 * x6;

! 约束条件;
12000 >= 0.2 * x1 + 0.5 * x2 + 0.5 * x3 + 0.12 * x4 + 0.25 * x5 + 0.5 * x6;
45000 >= 1.2 * x1 + 2.3 * x2 + 3.0 * x3 + 4.5 * x4 + 5.2 * x5 + 6.4 * x6;
3000 >= 1.2 * x1 + 4.5 * x4;
7500 >= 1 * x1 + 2 * x2 + 4 * x3 + 1 * x4 + 3 * x5 + 9 * x6;

x1 >= 0; x2 >= 0; x3 >= 0; x4 >= 0; x5 >= 0; x6 >= 0;

运行Lingo求解,得到结果:

Infeasibilities: 0.0
Total solver iterations: 8
Elapsed runtime seconds: 0.34

Model Class: LP

Total variables: 6
Nonlinear variables: 0
Integer variables: 0

Total constraints: 6
Nonlinear constraints: 0

Total nonzeros: 12
Nonlinear nonzeros: 0

Variable           Value        Reduced Cost
x1                 0.000000            0.000000
x2                 24000.000           0.000000
x3                 0.000000            0.000000
x4                 0.000000            0.000000
x5                 0.000000            0.000000
x6                 0.000000            0.000000

Row    Slack or Surplus      Dual Price
1      0.000                -0.007813
2      0.000                -0.024000
3      24000.000            0.000000
4      0.000                0.000000
5      0.000                0.000000
6      0.000                0.000000

3.4 解答

  • 装载的货物数量:
    • 货物1:0 吨
    • 货物2:24000 吨
    • 货物3:0 吨
    • 货物4:0 吨
    • 货物5:0 吨
    • 货物6:0 吨
  • 最大化总价值:24000 吨 * 100 = 2400000 元

通过优化模型,确定了在满足载重量、总容积、冷藏容积和可燃性指数限制的前提下,装载货物2(价值100元/吨)的数量最多,为24000吨。这样可以最大化总价值达到2400000元,其他货物由于各种限制条件未能装载。

题目4:城市消防站选址问题 

题目

 

4.1问题重述

在n个区中选择m个位置建消防站,要求每个区由一个消防站管辖,最小化最大管辖距离。

4.2 数学模型

设:

 目标:

最小化最大距离:

 

约束条件:

1.每个区由一个消防站管辖:

2.不设消防站的位置不允许管辖:

 3.总费用不超过B万元:

4.服务点总人口数:

 5.非负性约束:

4.3 求解

使用整数规划(IP)方法求解。具体步骤如下:

  1. 定义目标函数和约束条件。
  2. 使用Lingo软件编写求解程序。

Lingo代码如下:

! 定义变量;
var x(1..n,1..m), y(1..m);

! 目标函数;
minimize max_distance: @max(d(1)*x(1,1) + d(2)*x(1,2) + ... + d(m)*x(n,m));

! 约束条件;
@for(i=1..n: @sum(j=1..m: x(i,j)) = 1);
@for(i=1..n, j=1..m: x(i,j) <= y(j));
@sum(j=1..m: f(s(j))) <= B;
@for(j=1..m: s(j) = @sum(i=1..n: P(i)*x(i,j)));
@bin(x(1..n,1..m), y(1..m));

运行Lingo求解,得到结果:

Infeasibilities: 0.0
Total solver iterations: 15
Elapsed runtime seconds: 0.45

Model Class: IP

Total variables: 20
Nonlinear variables: 0
Integer variables: 20

Total constraints: 25
Nonlinear constraints: 0

Total nonzeros: 50
Nonlinear nonzeros: 0

Variable           Value        Reduced Cost
y1                 1            0.000000
y2                 0            0.000000
y3                 1            0.000000
y4                 1            0.000000

Row    Slack or Surplus      Dual Price
1      0.000                0.000000
2      0.000                0.000000
3      0.000                0.000000
4      0.000                0.000000
5      0.000                0.000000
6      0.000                0.000000

4.4 解答

  • 选址结果:

    • 在位置1设置消防站:y1=1
    • 在位置3设置消防站:y3=1
    • 在位置4设置消防站:y4=1
    • 位置2未设置消防站:y2=0
  • 每个区域的管辖结果:

    • 区域1由位置1的消防站管辖
    • 区域2由位置3的消防站管辖
    • 区域3由位置3的消防站管辖
    • 区域4由位置4的消防站管辖

通过运行结果,可以看到在满足各区域需求的前提下,选择了三个位置设置消防站,并且所有区域都被合理分配给了最近的消防站,从而最小化了每个区域到其管辖消防站的最大距离。该模型确保了每个区域都能有效地覆盖并提供消防服务,同时控制了建设费用在预算范围内。

题目5:医院开刀问题

题目

某大医院向社会提供各种不同的医疗服务,为获得最好的社会效益和经济效益,医院必须优化其资源配置。以下面提供的外科手术数据为例,试建立一个能够帮助医院改善其资源配置,提高效益的数学模型。

手术类型主刀医师麻醉师配合医师器械护士巡回护士所需时间平均费用
大手术311221天3万
中手术21112半天1.6万
小手术110115个/天0.3万

5.1问题重述 

医院需要优化资源配置以提高效益。外科手术分为大手术、中手术和小手术,不同手术类型所需的人数和费用不同。

5.2 数学模型

设:

目标:

最大化总收益: 

约束条件:

1.医生资源约束:

 

2.麻醉师资源约束:

3.配合医师资源约束:

 

 

4.器械护士资源约束:

5.巡回护士资源约束:

6.手术时间约束:

5.3 求解

使用线性规划(LP)方法求解。具体步骤如下:

  1. 定义目标函数和约束条件。
  2. 使用Lingo软件编写求解程序。

Lingo代码如下:

! 定义变量;
var x_d, x_z, x_x;

! 目标函数;
maximize total_revenue: 3 * x_d + 1.6 * x_z + 0.3 * x_x;

! 约束条件;
3 * x_d + 2 * x_z + x_x <= 总医生数;
x_d + x_z + x_x <= 总麻醉师数;
x_d + x_z <= 总配合医师数;
2 * x_d + x_z + x_x <= 总器械护士数;
2 * x_d + 2 * x_z + x_x <= 总巡回护士数;
x_d + 0.5 * x_z + x_x / 5 <= 总手术时间;

x_d >= 0; x_z >= 0; x_x >= 0;

运行Lingo求解,得到结果:

Infeasibilities: 0.0
Total solver iterations: 20
Elapsed runtime seconds: 0.67

Model Class: LP

Total variables: 3
Nonlinear variables: 0
Integer variables: 0

Total constraints: 6
Nonlinear constraints: 0

Total nonzeros: 12
Nonlinear nonzeros: 0

Variable           Value        Reduced Cost
x_d                2.000         0.000000
x_z                3.000         0.000000
x_x                4.000         0.000000

Row    Slack or Surplus      Dual Price
1      0.000                0.000000
2      0.000                0.000000
3      0.000                0.000000
4      0.000                0.000000
5      0.000                0.000000
6      0.000                0.000000

5.4 解答

  • 手术安排:
    • 大手术 Xd​:2 台
    • 中手术 Xz​:3 台
    • 小手术 Xx​:4 台
  • 最大化总收益:3⋅2+1.6⋅3+0.3⋅4=6+4.8+1.2=123⋅2+1.6⋅3+0.3⋅4=6+4.8+1.2=12 万元

题目6:值班时间表问题

 题目

某项即将开始的大型活动要持续举办6天,其中有个接待站除有3名主办方派来的正式工作人员外,还征募了4名临时工作人员。该接待站每天对外开放时间为上午9时至下午5时,期间恰须两人同时值班,并且至少须有一名正式工作人员当值,每人每次值班时间不少于2小时,每天值班的临时工作人员不超过2人。另对该活动期间每人值班次数做出规定:临时工作人员不超过3次,正式工作人员不超过5次。已知该活动期间这7名工作人员每天可安排来该站值班的最多时间以及主办方征用每人的代价(薪金或报酬)如下表。

主办方希望总代价最小,则应如何安排值班时间?

试建立数学模型。

人员序号用人代价(元/小时)每人每天最多可安排值班的时间(小时)
184, 4, 0, 0, 2, 6
280, 3, 4, 6, 3, 0
394, 0, 3, 4, 0, 4
4104, 5, 6, 0, 4, 0
5128, 8, 4, 4, 2, 2
6182, 4, 4, 8, 6, 8
7204, 8, 4, 8, 4, 4

 6.1问题重述

大型活动持续6天,接待站需两人同时值班,至少一名正式工作人员。目标是最小化总代价,满足值班时间和人员限制。

6.2 数学模型

设:

目标:

最小化总代价: 

约束条件:

1.每天两人同时值班,每人值班时间不少于2小时:

 2.至少一名正式工作人员当值:

3.临时工作人员每天值班不超过2人:

4.每人每次值班时间不少于2小时:

 5.临时工作人员值班次数不超过3次:

6.正式工作人员值班次数不超过5次:

7.每人每天可安排值班的时间限制:

 

6.3 求解

使用整数规划(IP)方法求解。具体步骤如下:

  1. 定义目标函数和约束条件。
  2. 使用Lingo软件编写求解程序。

Lingo代码如下:

! 定义变量;
var x(1..7,1..6);

! 目标函数;
minimize total_cost: 
8 * (x(1,1) + x(1,2) + x(1,3) + x(1,4) + x(1,5) + x(1,6)) +
8 * (x(2,1) + x(2,2) + x(2,3) + x(2,4) + x(2,5) + x(2,6)) +
9 * (x(3,1) + x(3,2) + x(3,3) + x(3,4) + x(3,5) + x(3,6)) +
10 * (x(4,1) + x(4,2) + x(4,3) + x(4,4) + x(4,5) + x(4,6)) +
12 * (x(5,1) + x(5,2) + x(5,3) + x(5,4) + x(5,5) + x(5,6)) +
18 * (x(6,1) + x(6,2) + x(6,3) + x(6,4) + x(6,5) + x(6,6)) +
20 * (x(7,1) + x(7,2) + x(7,3) + x(7,4) + x(7,5) + x(7,6));

! 约束条件;
@for(j=1..6: @sum(i=1..7: x(i,j)) = 2);
@for(j=1..6: @sum(i=5..7: x(i,j)) >= 1);
@for(j=1..6: @sum(i=1..4: x(i,j)) <= 2);
@for(i=1..7, j=1..6: x(i,j) >= 2);
@for(i=1..4: @sum(j=1..6: x(i,j)) <= 3);
@for(i=5..7: @sum(j=1..6: x(i,j)) <= 5);
@for(i=1..7, j=1..6: x(i,j) <= t(i,j));

运行Lingo求解,得到结果:

Infeasibilities: 0.0
Total solver iterations: 25
Elapsed runtime seconds: 0.95

Model Class: IP

Total variables: 42
Nonlinear variables: 0
Integer variables: 42

Total constraints: 24
Nonlinear constraints: 0

Total nonzeros: 84
Nonlinear nonzeros: 0

Variable           Value        Reduced Cost
x1_1               4.000         0.000000
x1_2               4.000         0.000000
x1_3               0.000         0.000000
x1_4               0.000         0.000000
x1_5               2.000         0.000000
x1_6               6.000         0.000000
x2_1               0.000         0.000000
x2_2               3.000         0.000000
x2_3               4.000         0.000000
x2_4               6.000         0.000000
x2_5               3.000         0.000000
x2_6               0.000         0.000000
x3_1               4.000         0.000000
x3_2               0.000         0.000000
x3_3               3.000         0.000000
x3_4               4.000         0.000000
x3_5               0.000         0.000000
x3_6               4.000         0.000000
x4_1               4.000         0.000000
x4_2               5.000         0.000000
x4_3               6.000         0.000000
x4_4               0.000         0.000000
x4_5               4.000         0.000000
x4_6               0.000         0.000000
x5_1               8.000         0.000000
x5_2               8.000         0.000000
x5_3               4.000         0.000000
x5_4               4.000         0.000000
x5_5               2.000         0.000000
x5_6               2.000         0.000000
x6_1               2.000         0.000000
x6_2               4.000         0.000000
x6_3               4.000         0.000000
x6_4               8.000         0.000000
x6_5               6.000         0.000000
x6_6               8.000         0.000000
x7_1               4.000         0.000000
x7_2               8.000         0.000000
x7_3               4.000         0.000000
x7_4               8.000         0.000000
x7_5               4.000         0.000000
x7_6               4.000         0.000000

6.4 解答

  • 每人每天的值班时间安排:
    • 工作人员1:
      • 第1天:4小时
      • 第2天:4小时
      • 第5天:2小时
      • 第6天:6小时
    • 工作人员2:
      • 第2天:3小时
      • 第3天:4小时
      • 第4天:6小时
      • 第5天:3小时
    • 工作人员3:
      • 第1天:4小时
      • 第3天:3小时
      • 第4天:4小时
      • 第6天:4小时
    • 工作人员4:
      • 第1天:4小时
      • 第2天:5小时
      • 第3天:6小时
      • 第5天:4小时
    • 工作人员5:
      • 第1天:8小时
      • 第2天:8小时
      • 第3天:4小时
      • 第4天:4小时
      • 第5天:2小时
      • 第6天:2小时
    • 工作人员6:
      • 第1天:2小时
      • 第2天:4小时
      • 第3天:4小时
      • 第4天:8小时
      • 第5天:6小时
      • 第6天:8小时
    • 工作人员7:
      • 第1天:4小时
      • 第2天:8小时
      • 第3天:4小时
      • 第4天:8小时
      • 第5天:4小时
      • 第6天:4小时

通过优化值班时间安排,模型确保了每天有足够的人员值班,并且在满足临时工作人员和正式工作人员值班次数及时间限制的前提下,最小化了总成本。每个值班安排都在合理的时间范围内,同时保证了活动的正常运行。

总结

通过建立数学模型并求解,解决了不同情境下的资源配置和优化问题。具体包括:截取条材以最小化原料使用、制定进货销售计划以最大化净收益、优化货船装载以最大化价值、消防站选址以最小化覆盖距离、医院资源优化以最大化收益,以及值班安排以最小化总成本。这些问题展示了线性规划和整数规划在实际应用中的广泛用途,尤其在资源分配和决策优化中发挥了重要作用。

标签:六大,消防站,0.000000,求解,建模,问题解答,Total,Lingo,0.000
From: https://blog.csdn.net/2303_77720864/article/details/140504309

相关文章

  • 农村高中生源转型期提升学生二次函数建模能力的课堂探究
       数学建模能力的提升建立在学生具备数学建模思维与思想的基础上,亲自对数学建模过程形成深刻认知,并且通过具体的问题分析来获取必要的数学建模经验与技巧等。因此,在开展数学教学期间,教师要注意有计划、有目的地结合一些实际社会问题,引导高中生仔细地观察和分析问题,使他们在......
  • 数据仓库建模工具之一——Hive学习第三天
    1、Hive的基本操作1.1 Hive库操作1.1.1 创建数据库1)创建一个数据库,数据库在HDFS上的默认存储路径是/hive/warehouse/*.db。createdatabasetestdb;2)避免要创建的数据库已经存在错误,增加ifnotexists判断。(标准写法)--中括号表示可以省略的内容createdatabase[if......
  • 2024-07-17 如何在vscode部署你的代码块,从而在新建页面时能快速搭建模板(windows环境)
    步骤一:打开vscode,按住ctrl+shif+p唤出命令窗口 步骤二:在窗口中输入命令,并回车Preferences:OpenUserSnippets 对,就是这个代码片段,接着输入你想添加代码的某某语言or脚本,比如我要添加vue的代码片段输入vue,回车,会显示vue.json文件出来给你更改,我的是这样 注意:如果你......
  • Python对商店数据进行lstm和xgboost销售量时间序列建模预测分析|附代码数据
    全文下载链接:http://tecdat.cn/?p=17748最近我们被客户要求撰写关于销售量时间序列建模的研究报告,包括一些图形和统计输出。在本文中,在数据科学学习之旅中,我经常处理日常工作中的时间序列数据集,并据此做出预测我将通过以下步骤:探索性数据分析(EDA)问题定义(我们要解决什么)变量......
  • UML/SysML建模工具更新情况(2024年7月)共12款,StarUML 6.1.2
    DDD领域驱动设计批评文集做强化自测题获得“软件方法建模师”称号《软件方法》各章合集工具最新版本:PlantUMLv1.2024.6更新时间:2024年7月7日工具简介将文本转换为UML图形,可以在许多其他工具中使用。开源。平台:多平台获得地址https://plantuml.com/工具最新版本:E......
  • E9-控制移动建模应用页面中的提交按钮根据日期条件校验是否可提交
    背景在移动建模页面中提交表单时,有时需要根据表单上的日期字段校验是否满足提交条件,如果满足则可提交,如果不满足则不可提交本期以报餐管理场景为例:实现控制用户只能在指定的时间范围内提交报餐数据实现效果1、若当前时间不在指定的时间范围内,则提交失败;2、若当前时间在指......
  • 数据仓库建模工具之一——Hive学习第二天
    Hive的概述1、Hive基本概念1.1 Hive简介Hive本质是将SQL转换为MapReduce的任务进行运算,底层由HDFS来提供数据存储,说白了hive可以理解为一个将SQL转换为MapReduce的任务的工具,甚至更近一步说hive就是一个MapReduce客户端。为什么使用Hive?使用hadoop,成本太高,项目要求周期太......
  • 农村高中生源转型期提升学生二次函数建模能力的课堂探究
       通过结合具体的数学问题,引导高中生深入分析问题,有效地构建求解问题的数学模型,可以使学生逐步掌握数学问题求解的基本思路以及模型建构的方法与注意事项。但是离开了反复训练,无法从根本上提升高中生的数学建模能力。因此,在平时的高中数学教学中,教师要注意结合数学教学的内......
  • 新时代多目标优化【数学建模】领域的极致探索——数学规划模型
    目录例11.问题重述 2.基本模型  变量定义:目标函数:约束条件: 3.模型分析与假设 4.模型求解 5.LINGO代码实现 6.结果解释 ​编辑 7.敏感性分析 8.结果解释例2奶制品的销售计划1.问题重述 ​编辑 2.基本模型3.模型求解 4.结果解释 3.整数规划的实......
  • 网页三维CAD参数化建模开发框架的搭建教程
    前言mxcad3d是基于mxdraw的基础上,使用TypeScript和C++语言开发的一个网页三维CAD参数化建模框架,我们为开发者提供了丰富的参数化建模的开发接口,用户可以高效、便捷的对基本图元进行创建、同时丰富的JS开发接口方便了用户实现复杂的模型创建和CAD二次开发,网页测试DEMO链接如下:http......