首页 > 其他分享 >MViT:性能杠杠的多尺度ViT | ICCV 2021

MViT:性能杠杠的多尺度ViT | ICCV 2021

时间:2024-07-17 13:53:42浏览次数:23  
标签:Transformer 张量 times ICCV 池化 2021 ViT 序列 stage

论文提出了多尺度视觉Transformer模型MViT,将多尺度层级特征的基本概念与Transformer模型联系起来,在逐层扩展特征复杂度同时降低特征的分辨率。在视频识别和图像分类的任务中,MViT均优于单尺度的ViT

来源:晓飞的算法工程笔记 公众号

论文: Multiscale Vision Transformers

Introduction


  论文提出了用于视频和图像识别的多尺度ViT(MViT),将FPN的多尺度层级特征结构与Transformer联系起来。MViT包含几个不同分辨率和通道数的stage,从小通道的输入分辨率开始,逐层地扩大通道数以及降低分辨率,形成多尺度的特征金字塔。

  在视频识别任务上,不使用任何外部预训练数据,MViT比视频Transformer模型有显着的性能提升。而在ImageNet图像分类任务上,简单地删除一些时间相关的通道后,MViT比用于图像识别的单尺度ViT的显着增益。

Multiscale Vision Transformer (MViT)


  通用多尺度Transformer架构的核心在于多stage的设计,每个stage由多个具有特定分辨率和通道数的Transformer block组成。多尺度Transformers逐步扩大通道容量,同时逐步池化从输入到输出的分辨率。

Multi Head Pooling Attention

  多头池化注意(MHPA)是一种自注意操作,可以在Transformer block中实现分辨率灵活的建模,使得多尺度Transformer可在逐渐变化的分辨率下运行。与通道和分辨率固定的原始多头注意(MHA)操作相比,MHPA池化通过降低张量的分辨率来缩减输入的整体序列长度。

  对于序列长度为 \(L\) 的 \(D\) 维输入张量 \(X\),\(X \in \mathbb{R}^{L\times D}\),根据MHA的定义先通过线性运算将输入\(X\)映射为Query张量\(\hat{Q} \in \mathbb{R}^{L\times D}\),Key张量\(\hat{K} \in \mathbb{R}^{L\times D}\)和Value张量\(\hat{V} \in \mathbb{R}^{L\times D}\)。

  然后通过池化操作\(\mathcal{P}\)将上述张量缩减到特定长度。

  • Pooling Operator

  在进行计算之前,中间张量\(\hat{Q}\)、\(\hat{K}\)、\(\hat{V}\)需要经过池化运算\(\mathcal{P}(·; \Theta)\)的池化,这是的MHPAMViT的基石。

  运算符\(\mathcal{P}(·; \Theta)\)沿每个通道对输入张量执行池化核计算。将\(\Theta\)分解为\(\Theta := (k, s, p)\),运算符使用维度\(k\)为\(k_T\times k_H\times k_W\)、步幅\(s\)为\(s_T\times s_H \times s_W\)、填充\(p\)为\(p_T\times p_H\times p_W\)的池化核\(k\),将维度为\(L = T\times H\times W\)的输入张量减少到\(\tilde{L}\):

  通过坐标公式计算,将池化的张量展开得到输出\(\mathcal{P}(Y ; \Theta)\in \mathbb{R}^\tilde{L}\times D\),序列长度减少为\(\tilde{L}= \tilde{T}\times \tilde{H}\times \tilde{W}\)。

  默认情况下,MPHA的重叠内核\(k\)会选择保持形状的填充值\(p\),因此输出张量\(\mathcal{P}(Y ; \Theta)\)的序列长度能够降低\(\tilde{L}\)整体减少\(s_{T}s_{H}s_{W}\)倍。

  • Pooling Attention.

  池化运算符\(\mathcal{P}(\cdot; \Theta)\)在所有\(\hat{Q}\)、\(\hat{K}\)、\(\hat{V}\)中间张量中是独立的,使用不同的池化核\(k\)、不同的步长\(s\)以及不同的填充\(p\)。定义\(\theta\)产生的池化后pre-attention向量为\(Q = P(\hat{Q}; \Theta_Q)\), \(K = P(\hat{K}; \Theta_K)\)和\(V = P(\hat{V}; \Theta_V)\),随后在这些向量上进行注意力计算:

  根据矩阵乘积可知,上述公式会引入\(S_K=S_V\)的约束。总体而言,池化注意力的完整计算如下:

  \(\sqrt{d}\)用于按行归一化内积矩阵。池化注意力计算的输出序列长度的缩减跟\(\mathcal{P}(\cdot)\)中的\(Q\)向量一样,为步长相关的\(s^Q_TS^Q_HS^Q_W\)倍。

  • Multiple heads.

  与常规的注意力操作一样,MHPA可通过\(h\)个头来并行化计算,将\(D\)维输入张量\(X\)的平均分成\(h\)个非重叠子集,分别执行注意力计算。

  • Computational Analysis.

QKV张量的长度缩减对多尺度Transformer模型的基本计算和内存需求具有显着的好处,序列长度缩减可表示为:

  考虑到\(\mathcal{P}(·; \Theta)\)的输入张量具有通道\(D\times T\times H\times W\),MHPA的每个头的运行时复杂度为\(O(T HW D/h(D + T HW/f_Q f_K))\)和内存复杂度为\(O(T HW h(D/h + T HW/f_Q f_K))\)。

  另外,通过对通道数\(D\)和序列长度项\(THW/f_Q f_K\)之间的权衡,可指导架构参数的设计选择,例如头数和层宽。

Multiscale Transformer Networks

  • Preliminaries: Vision Transformer (ViT)

ViT将\(T\times H\times W\)的输入切分成\(1\times 16\times 16\)的不重叠小方块,通过point-wise的线性变换映射成\(D\)维向量。

  随后将positional embedding \(E\in \mathbb{R}^{L\times D}\)添加到长度为\(L\)、通道为\(D\)的投影序列中,对位置信息进行编码以及打破平移不变性。最后,将可学习的class embedding附加到投影序列中。

  得到的长度为\(L + 1\)的序列由\(N\)个Transformer block依次处理,每个Transformer block都包含MHAMLPLN操作。定义\(X\)视为输入,单个Transformer block的输出\(Block(X)\)的计算如下:

  \(N\)个连续block处理后的结果序列会被层归一化,随后将class embedding提取并通过线性层预测所需的输出。默认情况下,MLP的隐藏层通道是\(4D\)。另外,需要注意的是,ViT在所有块中保持恒定的通道数和空间分辨率。

  • Multiscale Vision Transformers (MViT).

MViT的关键是逐步提高通道通道以及降低空间分辨率,整体结构如表2所示。

  • Scale stages

  每个scale stage包含\(N\)个Transformer blockstage内的block输出相同通道数和分辨率的特征。在网络输入处(表2中的cube1),通过三维映射将图像处理为通道数较小(比典型的ViT模型小8倍),但长度很长(比典型的ViT模型高16倍)图像块序列。

  在scale stage之间转移时,需要上采样处理序列的通道数以及下采样处理序列的长度。这样的做法能够有效地降低视觉数据的空间分辨率,使得网络能够在更复杂的特征中理解被处理的信息。

  • Channel expansion

  在stage转移时,通过增加最后一个MLP层的输出来增加通道数。通道数的增加与空间分辨率的缩减相关,假设空间分倍率下采样4倍,那通道数则增加2倍。这样的设计能够在一定程度上保持stage之间的计算复杂度,跟卷积网络的设计理念类似。

  • Query pooling

  由MPHA公式可知,Q张量可控制输出的序列长度,通过步长为\(s\equiv (s^Q_T, s^Q_H, s^Q_W)\)的\(\mathcal{P}(Q;k;p;s)\)池化操作将序列长度缩减\(s^Q_T\cdot s^Q_H\cdot s^Q_W\)倍。在每个stage中,仅需在开头中减少分辨率,剩余部分均保持分辨率,所以仅设置stage的首个MHPA操作的步长`\(S^Q > 1\),其余的约束为\(s^Q\equiv (1,1,1)\)。

  • Key-Value pooling

  与Q张量不同,改变KV张量的序列长度不会改变输出序列长度,但在降低池化操作的的整体计算复杂度中起着关键作用。

  因此,对KVQ池化的使用进行解耦,Q池化用于每个stage的第一层,KV池化用于剩余的层。由MPHA公式可知,KV张量的序列长度需要相同才能计算注意力权重,因此KV张量池化的步长需要相同。在默认设置中,约束同一stage的池化参数\((k; p; s)\)为相同,即\(\Theta_K ≡ \Theta_V\),但可自适应地改变stage之间的s缩放参数。

  • Skip connections

  如图3所示,由于通道数和序列长度在residual block内发生变化,需要在skip connection中添加\(\mathcal{P}(\cdot; {\Theta}_{Q})\)池化来适应其两端之间的通道不匹配。

  同样地,为了处理stage之间的通道数不匹配,采用一个额外的线性层对MHPA操作的layer-normalized输出进行升维处理。

Network instantiation details

  表3展示了ViTMViT的基本模型的具体结构:

  • ViT-Base(表 3a):将输入映射成尺寸为\(1\times 16\times 16\)且通道为\(D = 768\)的不重叠图像块,然后使用\(N = 12\)个Transformer block进行处理。对于\(8\times 224\times 224\)的输入,所有层的分辨率固定为\(768\times 8\times 14\times 14\),序列长度为\(8\times 14\times 14 + 1=1569\)。
  • MViT-Base(表 3b):由4个scale stage组成,每个stage都有几个输出尺寸一致的Transformer blockMViT-B通过形状为\(3\times 7\times 7\)的立方体(类似卷积操作)将输入映射且通道为\(D = 96\)的重叠图像块序列,序列长度为\(8\times 56\times 56 + 1 = 25089\)。该序列每经过一个stage,序列长度都会减少4倍,最终输出的序列长度为\(8\times 7\times 7 + 1 = 393\)。同时,通道数也会被上采样2倍,最终增加到768。需要注意,所有池化操作以及分辨率下采样仅在数据序列上执行,不涉及class token embedding

  在scale1 stageMHPA的头数量设置为\(h = 1\),随着通道数增加头数量(保持\(D/h=96\))。在stage转移时,通过MLP前一stage的输出通道增加2倍,并且在下一stage开头对Q执行MHPA池化,其中\(s^{Q} = (1, 2, 2)\)。

  在MHPA block中使用\(\Theta_K \equiv \Theta_V\)的KV池化,其中,scale1的步长为\(s^{K}=(1,8,8)\)。步长随着stage的分辨率缩小而减少,使得KVblock间保持恒定的缩放比例。

Experiments


Video Recognition

  在五个视频识别数据集上的主要结果对比,MViT均有不错的性能提升。

Image Recognition


  在ImageNet上对比图像分类效果。

Conclusion


  论文提出了多尺度视觉Transformer模型MViT,将多尺度层级特征的基本概念与Transformer模型联系起来,在逐层扩展特征复杂度同时降低特征的分辨率。在视频识别和图像分类的任务中,MViT均优于单尺度的ViT



如果本文对你有帮助,麻烦点个赞或在看呗~
更多内容请关注 微信公众号【晓飞的算法工程笔记】

work-life balance.

标签:Transformer,张量,times,ICCV,池化,2021,ViT,序列,stage
From: https://www.cnblogs.com/VincentLee/p/18307144

相关文章

  • 2021 ICPC 网络赛 第二场 L Euler Function(势能线段树,欧拉函数,状态压缩)
    2021ICPC网络赛第二场LEulerFunction题意给定序列,定义两个操作\(l,r,x\)对区间\([l,r]\)的数乘\(x\)\(l,r\)求\(\sum\phi{a}_{i}\)思路注意欧拉函数的性质,若\(i\bmodp=0\),\(\phi(i*p)=p*\phi(i)\),否则\(\phi(i*p)=(p-1)*\phi(i)\)因为\(x,w\)的......
  • python 解题 洛谷B2021到B2025
    B2021输出保留3位小数的浮点数n=float(input())n=n-0.000000000000001print('%.3f'%n)B2022输出保留12位小数的浮点数m=float(input())print('%.12f'%m)B2023空格分隔输出a=input()b=int(input())c=float(input())d=float(input())print(a,"",b,"......
  • LeViT:Facebook提出推理优化的混合ViT主干网络 | ICCV 2021
    论文提出了用于快速图像分类推理的混合神经网络LeVIT,在不同的硬件平台上进行不同的效率衡量标准的测试。总体而言,LeViT在速度/准确性权衡方面明显优于现有的卷积神经网络和ViT,比如在80%的ImageNettop-1精度下,LeViT在CPU上比EfficientNet快5倍来源:晓飞的算法工程笔记公众号论......
  • vite react Typescript 构建一个移动端网页
    使用Vite、React和TypeScript来构建一个移动端网页是一个高效且现代的开发方式。Vite是一个构建工具和开发服务器,它利用原生ES模块导入来提供快速的冷启动和即时模块热更新(HMR)。React是用于构建用户界面的JavaScript库,而TypeScript是JavaScript的一个超集,它添......
  • vit的自注意力机制的范围
    在VisionTransformer(ViT)中,自注意力机制的范围是指模型在处理图像块时,每个图像块能够与其他哪些图像块进行交互。ViT的自注意力机制具有全局范围,这意味着在自注意力层中,每个图像块都可以与其他所有图像块进行交互,而不管它们在原始图像中的空间位置如何。以下是ViT自......
  • 助力智慧交通,基于YOLO家族最新端到端实时目标检测算法YOLOv10全系列【n/s/m/b/l/x】参
    交通标志检测是交通标志识别系统中的一项重要任务。与其他国家的交通标志相比,中国的交通标志有其独特的特点。卷积神经网络(CNN)在计算机视觉任务中取得了突破性进展,在交通标志分类方面取得了巨大的成功。CCTSDB数据集是由长沙理工大学的相关学者及团队制作而成的,其有交通标志样......
  • 【vue组件库搭建07】Vitest单元测试
    vitest官网vue-test-utils我们的测试框架选择的是Vitest和vue-test-utils。两者的关系为:Vitest提供测试方法:断言、Mock、SpyOn等方法。vue-test-utils:挂载和渲染组件:VueTestUtils允许您在隔离中挂载组件,这意味着您可以测试单个组件而不必担心其子组件或需要......
  • vite 实现自动导入element plus icons 图标组件
    vite.config.js配置import{fileURLToPath,URL}from"node:url";importComponentsfrom"unplugin-vue-components/vite";importAutoImportfrom"unplugin-auto-import/vite";import{ElementPlusResolver}from"unplugin-v......
  • Project2007-2021安装包分享:附网盘地址+安装步骤
    不得不承认,Project是从事项目管理人员最常用的软件之一,它不仅可以提高项目的效率,缩短项目开发周期,操作难度相对来说也比较小。也可以说,Project是一款专注于项目管理的桌面应用软件。它可以帮助用户制定项目计划、分派任务、管理资源、跟踪进度以及生成汇报等。MicrosoftProj......
  • 【题解】 [CSP-J 2021 T1] 分糖果
    题目描述题目大意给定正整数\(n\)、\(L\)、\(R\),求\(\max_{i\in\left[L,R\right]}{i\bmodn}\)。思路题目主要考察:分类讨论。众所周知,对于\(\forallx\),有$(x\bmodn)\in\left[0,n-1\right]$。可以分为两种情况讨论:如果\(\left\lfloor\frac{L......