首页 > 其他分享 >为视觉语言多模态模型进行偏好优化

为视觉语言多模态模型进行偏好优化

时间:2024-07-16 23:07:16浏览次数:24  
标签:模态 显存 训练 image dataset 偏好 视觉 times size

为视觉语言多模态模型进行偏好优化

训练模型使得它能够理解并预测人类偏好是一项比较复杂的任务。诸如 SFT (Supervised finetuning) 的传统的方法一般都需要耗费较大成本,因为这些算法需要对数据打上特定的标签。而偏好优化 (Preference Optimization) 作为一种替代选项,通常可以简化这一过程,并产出更准确的结果。通过对候选回答的对比和排序,而不是赋予固定的标签,偏好优化使得模型能更高效地捕捉人类偏好中的细微差别。

偏好优化已经在大语言模型中广泛使用了,但现在,它也可以用在视觉语言模型 (VLM) 上。得益于 TRL 的开发,现在我们可以 使用 TRL 对 VLM 进行直接偏好优化 (Direct Preference Optimization)。本文将会介绍使用 TRL 和 DPO 对视觉语言模型进行训练的全过程。

偏好数据集

进行偏好优化,首先我们需要有一个能体现用户偏好的数据集。在双项选择的设定下,相应的数据一般包含一个提示词 (Prompt) 和两个候选回答,两个回答中一个被记为选中 (chosen),另一个被记为淘汰 (rejected)。模型将要去学习着给出选中的回答,而不是被淘汰的那个。下图就是一个例子:

图片来自 openbmb/RLAIF-V-Dataset 数据集

图片来自 openbmb/RLAIF-V-Dataset 数据集

❔ Question: How many families?

  • ❌ Rejected: The image does not provide any information about families.
  • ✅ Chosen: The image shows a Union Organization table setup with 18,000 families.

需要注意的是,尽管选中的回答也不是完全正确的 (回答 18000 个家庭还是不对,应该是 18000000),但它也好于那个被淘汰的回答。

本文将使用 openbmb/RLAIF-V-Dataset 作为示例数据集,它包含了超过 83000 条标注的数据。可以通过下面代码查看一下数据集:

>>> from datasets import load_dataset
>>> dataset = load_dataset("openbmb/RLAIF-V-Dataset", split="train[:1%]")
>>> sample = dataset[1]
>>> sample["image"].show()
>>> sample["question"]
'how many families?'
>>> sample["rejected"]
'The image does not provide any information about families.'
>>> sample["chosen"]
'The image shows a Union Organization table setup with 18,000 families.'

我们将要训练的 VLM 模型需要文本和图像同时作为输入,所以这里的第一步还是要对数据集格式进行改造。一条数据应该被结构化成能模拟人机对话的形式。用户提供一个提示语,其中包含一张图片和一个问题,然后模型需要能够给出一个回答。我们用以下代码实现格式转换:

from datasets import features
from transformers import AutoProcessor

processor = AutoProcessor.from_pretrained("HuggingFaceM4/idefics2-8b", do_image_splitting=False)

def format(example):
    # Prepare the input for the chat template
    prompt = [
        {
            "role": "user",
            "content": [{"type": "image"}, {"type": "text", "text": example["question"]}],
        },
    ]
    chosen = [
        {
            "role": "assistant",
            "content": [{"type": "text", "text": example["chosen"]}],
        },
    ]
    rejected = [
        {
            "role": "assistant",
            "content": [{"type": "text", "text": example["rejected"]}],
        },
    ]
    # Apply the chat template
    prompt = processor.apply_chat_template(prompt, tokenize=False)
    chosen = processor.apply_chat_template(chosen, tokenize=False)
    rejected = processor.apply_chat_template(rejected, tokenize=False)
    # Resize the image to ensure it fits within the maximum allowable
    # size of the processor to prevent OOM errors.
    max_size = processor.image_processor.size["longest_edge"]
    example["image"].thumbnail((max_size, max_size))
    return {"images": [example["image"]], "prompt": prompt, "chosen": chosen, "rejected": rejected}

# Apply the formatting function to the dataset,
# remove columns to end up with only "images", "prompt", "chosen", "rejected" columns
dataset = dataset.map(format, remove_columns=dataset.column_names)

# Make sure that the images are decoded, it prevents from storing bytes.
# More info here https://github.com/huggingface/blog/pull/2148#discussion_r1667400478
f = dataset.features
f["images"] = features.Sequence(features.Image(decode=True)) # to avoid bytes
dataset = dataset.cast(f)

完成了格式转换,我们来看看第一条数据:

>>> dataset[1]
{'images': [<PIL.JpegImagePlugin.JpegImageFile image mode=L size=980x812 at 0x154505570>],
 'prompt': 'User:<image>how many families?<end_of_utterance>\n',
 'rejected': 'Assistant: The image does not provide any information about families.<end_of_utterance>\n',
 'chosen': 'Assistant: The image shows a Union Organization table setup with 18,000 families.<end_of_utterance>\n'}

OK!接下来准备好 GPU,训练马上开始。

训练

我们将使用 Idefics2-8b 作为我们的示例模型,但 TRL 里的 DPO 也是能用在像 Llava 1.5PaliGemma 这样的模型上的 (可参考这篇文章: Finetuning Llava 1.5, PaliGemma and others)。不过训练之前,我们先检查一下我们的 GPU 显存是否够用:

训练需要多大的 GPU 显存?

一个 80GB VRAM 的 GPU 足够用来对 Idefics2-8b 进行 DPO 训练吗?我们可以先计算一下:

我们用 $ N $ 表示参数的数量,用 $ P $ 表示训练使用的精度。训练过程中,下列部分需要共同放入显存中:

  • 要训练的模型: $ N \times P $
  • 用以防止模型产生偏离的参考模型: 和要训练的模型一样大,所以也是 $ N \times P $
  • 梯度: 我们对所有参数都进行训练,所以每个参数都有梯度: $ N \times P $
  • 优化器的状态量: 我们使用 AdamW,一个参数会保存两个状态量,所以需要: $ 2 \times N \times P $

Idefics2-8b 有 80 亿 (8B) 参数,我们使用 float32 精度,每个参数占 4 个字节。所以总的显存需求是:

参数来源 计算公式 显存需求
要训练的模型 $ 8 \times 10^9 \times 4 $ 32 GB
参考模型 $ 8 \times 10^9 \times 4 $ 32 GB
梯度 $ 8 \times 10^9 \times 4 $ 32 GB
优化器状态量 $ 2 \times 8 \times 10^9 \times 4 $ 64 GB
合计 160 GB

这远超我们前面说的 80GB 显存了!幸运的是,我们可以使用量化、LoRA 等技术来大幅度地减少显存需求,让训练可以进行。接下来我们将介绍这些技术。

量化

量化会降低模型权重和激活值的精度,但也同时显著减少内存需求。将精度从 float32 改为 bfloat16 ,会让每个参数需要的比特数从 4 比特减少到 2 比特。这一策略不仅能减少内存使用,还会显著加速训练,确保以最小代价保证足够高的性能。具体做法如下:

import torch
from transformers import AutoModelForVision2Seq

model = AutoModelForVision2Seq.from_pretrained("HuggingFaceM4/idefics2-8b", torch_dtype=torch.bfloat16)

通过如下 bf16=True 的设置, bfloat16 也可以被用在优化器上:

from transformers import TrainingArguments

training_args = TrainingArguments(..., bf16=True)

LoRA

LoRA 对参数矩阵进行低秩分解; 在训练时,固定住原参数矩阵,仅训练分解出的两个矩阵。是一种大规模减少 LLM 训练参数的方法。LoRA 已被集成在了 PEFT 库里,使用非常方便:

  from transformers import AutoModelForVision2Seq
+ from peft import get_peft_model, LoraConfig

  model = AutoModelForVision2Seq.from_pretrained("HuggingFaceM4/idefics2-8b")
+ peft_config = LoraConfig(target_modules="all-linear")
+ model = get_peft_model(model, peft_config)

PEFT 像是给原模型进行了一次封装 (代码中称为 adapter )。训练时,实际上是这个 adapter 在被训练,而原有的模型保持不动。我们现在算算 LoRA 帮我们减少了多少要训练的参数:

>>> model.print_trainable_parameters()
trainable params: 55,348,736 || all params: 8,458,116,848 || trainable%: 0.6543860411799315

它帮我们把要训练的参数从八十亿降到了五千五百万!差距真大!这将显著减少显存需求。

使用 bfloat16 和 LoRA 后的显存需求

现在我们来算算新的显存需求:

参数来源 计算公式 显存需求
要训练的模型 $ 8 \mathrm{G} \times 2 $ 16 GB
参考模型 $ 8 \mathrm{G} \times 2 $ 16 GB
梯度 $ 55 \mathrm{M} \times 2 $ 0.1 GB
优化器状态量 $ 2 \times 55 \mathrm{M} \times 2 $ 0.2 GB
合计 32.3 GB

现在我们仅需 32GB 的显存就可以训练我们的 Idefics2-8b 模型了。这合理多了,用 80GB 显存的 GPU 就可以训练了。

PEFT 文档谷歌这篇关于 LoRA 和 QLoRA 文章 也提供了很多关于显存优化的帮助指南,读者感兴趣可以阅读。

训练时 batch size 怎么设定?

上述关于显存占用的计算还不算准确,因为实际训练时,激活值也需要占用显存。激活值是神经网络各层的输出。作为中间产物,它们的显存占用量取决于模型结构和训练时的 batch size。准确计算这些显存需求还是很困难的,我们一般依赖实验观察。

若想找到一个合适的 batch size ( per_device_train_batch_size ),你可以先随便选取一个你认为合适的数值 (比如 64) 然后试着开始训练。当然这大多数情况下会爆显存 (OOM)。如果这样,你可以减半 batch size,同时将 gradient_accumulation_steps 翻倍,以获得和原先 batch size 设定相同的效果。反复重复这一过程,最终当 OOM 不再出现时,你就可以训练了。我们的实验参数是: per_device_train_batch_size 设为 2, gradient_accumulation_steps 设为 32。

你还可以使用 gradient_checkpointing 来减少激活值所需的内存。这一技术在计算梯度时,会重新计算一遍前向过程,而不是在前向过程中保存用于计算梯度的中间结果。需要使用时,设置 gradient_checkpointing=True 即可。

完整训练代码

一切就绪,我们可以开始训练了。下面是我们的完整训练代码。除了上面提到的部分外,我们还设置了 dataset_num_procdataloader_num_workers 等参数,用于加速数据预处理。

# dpo_idefics2-8b.py
from datasets import features, load_dataset
from transformers import AutoModelForVision2Seq, AutoProcessor
import torch
from trl import DPOConfig, DPOTrainer
from peft import LoraConfig

def main():
    # Load the model and processor
    model = AutoModelForVision2Seq.from_pretrained("HuggingFaceM4/idefics2-8b", torch_dtype=torch.bfloat16)
    processor = AutoProcessor.from_pretrained("HuggingFaceM4/idefics2-8b", do_image_splitting=False)

    # Load the dataset
    dataset = load_dataset("openbmb/RLAIF-V-Dataset", split="train")

    def format(example):
        # Prepare the input for the chat template
        prompt = [{"role": "user", "content": [{"type": "image"}, {"type": "text", "text": example["question"]}]}]
        chosen = [{"role": "assistant", "content": [{"type": "text", "text": example["chosen"]}]}]
        rejected = [{"role": "assistant", "content": [{"type": "text", "text": example["rejected"]}]}]
        # Apply the chat template
        prompt = processor.apply_chat_template(prompt, tokenize=False)
        chosen = processor.apply_chat_template(chosen, tokenize=False)
        rejected = processor.apply_chat_template(rejected, tokenize=False)
        # Resize the image to ensure it fits within the maximum allowable
        # size of the processor to prevent OOM errors.
        max_size = processor.image_processor.size["longest_edge"]// 2
        example["image"].thumbnail((max_size, max_size))
        return {"images": [example["image"]], "prompt": prompt, "chosen": chosen, "rejected": rejected}

    # Apply the formatting function to the dataset
    dataset = dataset.map(format, remove_columns=dataset.column_names, num_proc=32)

    # Make sure that the images are decoded, it prevents from storing bytes.
    # More info here https://github.com/huggingface/blog/pull/2148#discussion_r1667400478
    f = dataset.features
    f["images"] = features.Sequence(features.Image(decode=True))
    dataset = dataset.cast(f)

    # Train the model
    training_args = DPOConfig(
        output_dir="idefics2-8b-dpo",
        bf16=True,
        gradient_checkpointing=True,
        per_device_train_batch_size=2,
        gradient_accumulation_steps=32,
        num_train_epochs=1,
        dataset_num_proc=32, # tokenization will use 32 processes
        dataloader_num_workers=32, # data loading will use 32 workers
        logging_steps=10,
    )
    trainer = DPOTrainer(
        model,
        ref_model=None, # not needed when using peft
        args=training_args,
        train_dataset=dataset,
        tokenizer=processor,
        peft_config=LoraConfig(target_modules="all-linear"),
    )

    trainer.train()

if __name__ == "__main__":
    main()

启动脚本开始训练,接下来就等待结果吧

标签:模态,显存,训练,image,dataset,偏好,视觉,times,size
From: https://www.cnblogs.com/huggingface/p/18306310

相关文章

  • 定制化服务发现:Eureka中服务实例偏好的高级配置
    定制化服务发现:Eureka中服务实例偏好的高级配置在微服务架构中,服务实例的智能管理和优化是保证系统高效运行的关键。Eureka作为Netflix开源的服务注册与发现框架,提供了丰富的配置选项来满足不同场景下的需求。服务实例偏好配置允许开发者根据特定的业务需求,定制化服务实例......
  • 无人机视觉定位研究(Matlab代码实现)
        ......
  • 毕业设计 基于机器视觉的PCB焊接缺陷检测系统(Halcon+C#)
    毕业设计基于机器视觉的PCB焊接缺陷检测系统一、功能需求检测PCB板的焊接缺陷:漏焊、虚焊等二、开发环境1、Halcon2、C#三、运行效果处理图片:运行视频:毕业设计基于机器视觉的PCB焊接缺陷检测系统毕业设计资料(C#软件源码+Halcon算法源码+开题报告+毕业设计+......
  • 机器人前沿--PalmE:An Embodied Multimodal Language Model 具身多模态大(语言)模型
    首先解释这篇工作名称Palm-E,发表时间为2023.03,其中的Palm是谷歌内部在2022.04开发的大语言模型,功能类似ChatGPT,只是由于各种原因没有那样火起来,E是Embodied的首字母,翻译过来就是具身多模态大语言模型大模型,我们一般习惯将其称为具身多模态大模型。何为具身?这个词听起来非常......
  • 3D感知视觉表示与模型分析:深入探究视觉基础模型的三维意识
    在深度学习与大规模预训练的推动下,视觉基础模型展现出了令人印象深刻的泛化能力。这些模型不仅能够对任意图像进行分类、分割和生成,而且它们的中间表示对于其他视觉任务,如检测和分割,同样具有强大的零样本能力。然而,这些模型是否能够理解图像所描绘的三维世界结构,仍然是一个值得......
  • AutoCAD VBA 模态窗体焦点处理
    引用的win32apiOptionExplicitDeclarePtrSafeFunctionSetParentLib"user32"(ByValhWndChildAsLong,ByValhWndNewParentAsLong)AsLongDeclarePtrSafeFunctionCoCreateGuidLib"ole32.dll"(GAsGUID)AsLongDeclarePtrSafeFunct......
  • 视觉定位是否比GPS更精确?
    视觉定位与GPS定位在精确度上的比较,需要考虑多种因素,包括技术原理、应用场景、环境条件等。以下是对两者精确度的详细分析:一、技术原理视觉定位:原理:视觉定位利用光学原理和图像处理技术进行尺寸、形状和位置测量。它通过分析相机捕捉的图像,识别并定位目标物体或位置。精......
  • 视觉定位和GPS定位在应用场景有什么不同?
    视觉定位的应用场景工业自动化:在工业生产线上,视觉定位技术可以实现对不同物体的精确定位和识别,从而支持智能化生产。例如,在装配线上,机器人可以通过视觉定位技术准确地抓取和放置零件。机器人导航:无论是服务机器人、扫地机器人还是工业勘探机器人,视觉定位都是实现自主......
  • 最新AI一站式系统源码-ChatGPT商业版系统源码,支持自定义AI智能体应用、AI绘画、AI视频
     一、前言人工智能语言模型和AI绘画在多个领域都有广泛的应用.....SparkAi创作系统是一款基于ChatGPT和Midjourney开发的智能问答和绘画系统,提供一站式AIB/C端解决方案,涵盖AI大模型提问、AI绘画、AI视频、文档分析、图像识别和理解、TTS&语音识别、AI换脸等多项功能。......
  • 《昇思25天学习打卡营第15天|计算机视觉-SSD目标检测》
    FCN图像语义分割&ResNet50迁移学习&ResNet50图像分类SSD目标检测模型简介SSD,全称SingleShotMultiBoxDetector,是WeiLiu在ECCV2016上提出的一种目标检测算法。使用NvidiaTitanX在VOC2007测试集上,SSD对于输入尺寸300x300的网络,达到74.3%mAP(meanAveragePrecisi......