首页 > 其他分享 >逻辑回归(机器学习)

逻辑回归(机器学习)

时间:2024-07-16 19:28:44浏览次数:14  
标签:逻辑 plt 机器 回归 np print theta data def

上一题篇文章写了线性回归以及梯度下降法,这篇文章讲一下逻辑回归。虽然它叫逻辑回归,但是它并非回归模型,而是一个分类模型。那么回归和分类有什么区别呢?在上一篇文章中,我们以住房各特征预测了房价中位数。这个是给定数据,预测一个连续的数据。而分类呢?还是举出上面的例子,只不过这次我不需要预测价格中位数了,只需要预测这个房子的“好与坏”,值域只有(好、坏)。

最后注意:

求导后是

\frac{\partial J(\theta)}{\partial \theta_{j}}=\frac{1}{m}\sum_{i=1}^{m}(h_{\theta}(x^{(i)})-y^{(i)})x^{(i)}_{j}

矩阵形式是:
\frac{\partial J(\theta)}{\partial \theta}=\frac{1}{m}X^{T}(g(X\theta )-y)

下面是逻辑回归矩阵形式的推导:

实验操作:
要求:已知有数据(exam1,exam2,aeecpted),第一个和第二个是成绩,第三个是是否被大学录取,要求根据成绩来预测是否被大学录取。

直接给出数据,自己复制到txt中测试(数据在最后面):

第一步先看一下数据可视化:
 

import pandas as pd
import numpy as np
import matplotlib

matplotlib.use('tKAgg')
import matplotlib.pyplot as plt

path = "D:\JD\Documents\大学等等等\自学部分\machine_-learning-master\machine_-learning-master\ex_2\ex2data1.txt"
data = pd.read_csv(path, names=['Exam1', 'Exam2', 'Accepted'])
print(data.head())
fig, ax = plt.subplots()
ax.scatter(data[data['Accepted'] == 0]['Exam1'], data[data['Accepted'] == 0]['Exam2'], c='r', marker='x', label='y=0')
ax.scatter(data[data['Accepted'] == 1]['Exam1'], data[data['Accepted'] == 1]['Exam2'], c='g', marker='o', label='y=1')
ax.legend()
ax.set(
    xlabel='exam1',
    ylabel='exam2'
)
plt.show()

接下来写函数:

预测值为:


\hat{y}=g(X\theta)

这里面代价函数:

J(\theta)=-\frac{1}{m}[y*log(\hat{y})+(1-y)*log(1-\hat{y})]

注意矩阵乘法和*乘法最后得到的结果不一样哦!

def get_Xy(data):
    data.insert(0, 'ones', 1)
    X_ = data.iloc[:, :-1]  # 获取除了最后一列的数据集
    y_ = data.iloc[:, -1]  # 获取最后一列的数据集

    X = X_.values  # 转化为数组
    y = y_.values.reshape(len(y_.values), 1)  # 从pandas中取出的只有一维的数据自动是行向量,或者(n,)没有第二维,所以reshape以下称为(n,1)
    return X, y


# sigmoid函数
def sigmoid(z):
    return 1 / (1 + np.exp(-z))

#损失函数
def costFunction(X, y, theta):
    A = sigmoid(X @ theta)  # 预测值一维矩阵
    epsilon = 1e-5  # 用来避免对数计算中的无效值
    first = y * np.log(A + epsilon)  # 转置后直接得到一个数,如果不转置还需要对矩阵求和
    second = (1 - y) * np.log(1 - A + epsilon)
    return -np.sum(first + second) / len(y)

接下来,梯度下降!

上面推导的过程求出来了损失函数求导的结果:
然后对参数进行梯度下降,迭代公式为:

\theta = \theta - \frac{\alpha }{m}*X^{T}(g(X\theta)-y)

# 定义梯度下降
def gradientDescent(X, y, theta, iters, alpha):
    m = len(X)
    costs = []
    for i in range(iters):
        A = sigmoid(X @ theta)
        theta = theta - alpha / m * X.T @ (A - y)
        cost = costFunction(X, y, theta)
        costs.append(cost)
        if i % 1000 == 0:
            print(f"Iteration {i}: cost = {cost}")
    return costs, theta

下面是损失函数随着迭代次数值的变化:

最后的theta是[[-23.77498778],[  0.18690941],[  0.18046614]]

实现预测:

def predict(X,theta):
    pre = sigmoid(X@theta)
    return [1 if i >= 0.5 else 0 for i in pre ]

预测值与真实值之间对比:

完整代码:

import pandas as pd
import numpy as np
import matplotlib

matplotlib.use('tKAgg')
import matplotlib.pyplot as plt

# 读取数据
path = "D:\\JD\\Documents\\大学等等等\\自学部分\\machine_-learning-master\\machine_-learning-master\\ex_2\\ex2data1.txt"
data = pd.read_csv(path, names=['Exam1', 'Exam2', 'Accepted'])
print(data.head())

# 绘制散点图
fig, ax = plt.subplots()
ax.scatter(data[data['Accepted'] == 0]['Exam1'], data[data['Accepted'] == 0]['Exam2'], c='r', marker='x', label='y=0')
ax.scatter(data[data['Accepted'] == 1]['Exam1'], data[data['Accepted'] == 1]['Exam2'], c='g', marker='o', label='y=1')
ax.legend()
ax.set(
    xlabel='exam1',
    ylabel='exam2'
)
plt.show()

# 提取X和y
def get_Xy(data):
    data.insert(0, 'ones', 1)
    X_ = data.iloc[:, :-1]  # 获取除了最后一列的数据集
    y_ = data.iloc[:, -1]  # 获取最后一列的数据集

    X = X_.values  # 转化为数组
    y = y_.values.reshape(len(y_.values), 1)  # 从pandas中取出的只有一维的数据自动是行向量,或者(n,)没有第二维,所以reshape以下称为(n,1)
    return X, y

# sigmoid函数
def sigmoid(z):
    return 1 / (1 + np.exp(-z))

# 损失函数
def costFunction(X, y, theta):
    A = sigmoid(X @ theta)  # 预测值一维矩阵
    epsilon = 1e-5  # 用来避免对数计算中的无效值
    first = y * np.log(A + epsilon)  # 转置后直接得到一个数,如果不转置还需要对矩阵求和
    second = (1 - y) * np.log(1 - A + epsilon)
    return -np.sum(first + second) / len(y)

theta = np.zeros((3, 1))
X, y = get_Xy(data)
const_init = costFunction(X, y, theta)
print(const_init)

# 定义梯度下降
def gradientDescent(X, y, theta, iters, alpha):
    m = len(X)
    costs = []
    for i in range(iters):
        A = sigmoid(X @ theta)
        theta = theta - alpha / m * X.T @ (A - y)
        cost = costFunction(X, y, theta)
        costs.append(cost)
        if i % 1000 == 0:
            print(f"Iteration {i}: cost = {cost}")
    return costs, theta

alpha = 0.004
iters = 200000
costs, theta = gradientDescent(X, y, theta, iters, alpha)

print("---------------------------")
print(costs)
print("---------------------------")
print(theta)

plt.figure()
plt.plot(range(iters), costs, label='Cost')
plt.xlabel('Iterations')
plt.ylabel('Cost')
plt.title('Cost Function Convergence')
plt.legend()
plt.show()

print("---------------------------")
# print(costs)
print(theta)

def predict(X,theta):
    pre = sigmoid(X@theta)
    return [1 if i >= 0.5 else 0 for i in pre ]


y_pre = predict(X,theta)

# 绘制真实值与预测值的比较图
plt.figure()
plt.plot(range(len(y)), y, label='real_values', linestyle='-', marker='o', color='g')
plt.plot(range(len(y)), y_pre, label='pre_value', linestyle='--', marker='x', color='r')
plt.xlabel('label')
plt.ylabel('value')
plt.title('differ')
plt.legend()
plt.show()

附:使用数据集

34.62365962451697,78.0246928153624,0
30.28671076822607,43.89499752400101,0
35.84740876993872,72.90219802708364,0
60.18259938620976,86.30855209546826,1
79.0327360507101,75.3443764369103,1
45.08327747668339,56.3163717815305,0
61.10666453684766,96.51142588489624,1
75.02474556738889,46.55401354116538,1
76.09878670226257,87.42056971926803,1
84.43281996120035,43.53339331072109,1
95.86155507093572,38.22527805795094,0
75.01365838958247,30.60326323428011,0
82.30705337399482,76.48196330235604,1
69.36458875970939,97.71869196188608,1
39.53833914367223,76.03681085115882,0
53.9710521485623,89.20735013750205,1
69.07014406283025,52.74046973016765,1
67.94685547711617,46.67857410673128,0
70.66150955499435,92.92713789364831,1
76.97878372747498,47.57596364975532,1
67.37202754570876,42.83843832029179,0
89.67677575072079,65.79936592745237,1
50.534788289883,48.85581152764205,0
34.21206097786789,44.20952859866288,0
77.9240914545704,68.9723599933059,1
62.27101367004632,69.95445795447587,1
80.1901807509566,44.82162893218353,1
93.114388797442,38.80067033713209,0
61.83020602312595,50.25610789244621,0
38.78580379679423,64.99568095539578,0
61.379289447425,72.80788731317097,1
85.40451939411645,57.05198397627122,1
52.10797973193984,63.12762376881715,0
52.04540476831827,69.43286012045222,1
40.23689373545111,71.16774802184875,0
54.63510555424817,52.21388588061123,0
33.91550010906887,98.86943574220611,0
64.17698887494485,80.90806058670817,1
74.78925295941542,41.57341522824434,0
34.1836400264419,75.2377203360134,0
83.90239366249155,56.30804621605327,1
51.54772026906181,46.85629026349976,0
94.44336776917852,65.56892160559052,1
82.36875375713919,40.61825515970618,0
51.04775177128865,45.82270145776001,0
62.22267576120188,52.06099194836679,0
77.19303492601364,70.45820000180959,1
97.77159928000232,86.7278223300282,1
62.07306379667647,96.76882412413983,1
91.56497449807442,88.69629254546599,1
79.94481794066932,74.16311935043758,1
99.2725269292572,60.99903099844988,1
90.54671411399852,43.39060180650027,1
34.52451385320009,60.39634245837173,0
50.2864961189907,49.80453881323059,0
49.58667721632031,59.80895099453265,0
97.64563396007767,68.86157272420604,1
32.57720016809309,95.59854761387875,0
74.24869136721598,69.82457122657193,1
71.79646205863379,78.45356224515052,1
75.3956114656803,85.75993667331619,1
35.28611281526193,47.02051394723416,0
56.25381749711624,39.26147251058019,0
30.05882244669796,49.59297386723685,0
44.66826172480893,66.45008614558913,0
66.56089447242954,41.09209807936973,0
40.45755098375164,97.53518548909936,1
49.07256321908844,51.88321182073966,0
80.27957401466998,92.11606081344084,1
66.74671856944039,60.99139402740988,1
32.72283304060323,43.30717306430063,0
64.0393204150601,78.03168802018232,1
72.34649422579923,96.22759296761404,1
60.45788573918959,73.09499809758037,1
58.84095621726802,75.85844831279042,1
99.82785779692128,72.36925193383885,1
47.26426910848174,88.47586499559782,1
50.45815980285988,75.80985952982456,1
60.45555629271532,42.50840943572217,0
82.22666157785568,42.71987853716458,0
88.9138964166533,69.80378889835472,1
94.83450672430196,45.69430680250754,1
67.31925746917527,66.58935317747915,1
57.23870631569862,59.51428198012956,1
80.36675600171273,90.96014789746954,1
68.46852178591112,85.59430710452014,1
42.0754545384731,78.84478600148043,0
75.47770200533905,90.42453899753964,1
78.63542434898018,96.64742716885644,1
52.34800398794107,60.76950525602592,0
94.09433112516793,77.15910509073893,1
90.44855097096364,87.50879176484702,1
55.48216114069585,35.57070347228866,0
74.49269241843041,84.84513684930135,1
89.84580670720979,45.35828361091658,1
83.48916274498238,48.38028579728175,1
42.2617008099817,87.10385094025457,1
99.31500880510394,68.77540947206617,1
55.34001756003703,64.9319380069486,1
74.77589300092767,89.52981289513276,1
 

标签:逻辑,plt,机器,回归,np,print,theta,data,def
From: https://blog.csdn.net/2303_77275067/article/details/140455330

相关文章

  • 机器学习中的梯度下降
            本文只是简单解释一下梯度下降,其中涉及到的公式并没有展示说明。1.什么是梯度?        梯度也可以理解为导数。        在一维空间中:梯度就是导数,或者说对于一个线性函数,也就是线的斜率。2.什么是梯度下降?    梯度是个向量,自变量......
  • 机器学习分类结果精度测定 - 混淆矩阵(Confusion Matrix)
    一、引言机器学习和数据科学中一个经常被忽视,但至关重要的概念是模型评估。你可能已经建立了一个非常先进的模型,但如果没有合适的评估机制,你就无法了解模型的效能和局限性。这就是混淆矩阵(ConfusionMatrix)派上用场的地方。1.1什么是混淆矩阵?混淆矩阵是一种特定的表格布局......
  • 数电_逻辑函数基础
    一逻辑函数的两种标准形式1最小项min变量之积,n个变量对应2的n次方个最小项性质输入变量的任何取值下必有一个最小项,而且仅有一个最小项值为1。全体最小项或为1。任意2个最小项相与为0。具有相邻性的两个最小项相或可以消去一对因子合并为一项。2最大项Min变量之和,n......
  • 暑期集训shellcode5(手搓机器码)
    拖进ida里面反汇编再让人工智能分析(我是废物)(后来给源码了,直接上源码)#include<string.h>#include<stdio.h>#include<stdlib.h>#include<inttypes.h>#include<capstone/capstone.h>#include<sys/mman.h>intupkeep(){setvbuf(stdin,NULL,_IONB......
  • 小白记录机器学习1
    机器学习包含4个部分:数据、模型、目标函数、最优化算法数据:由特征和标签组成,特征是每个数据带有的n个自变量变量,标签是单个数据对应的唯一的因变量,所以可以理解成:已知n个自变量,建立一个函数,求因变量。标签是数据的结果,也就是我们要预测的结果。机器学习的主要过程:收集数据:首......
  • 电销机器人到底有没有效果?
    一、为什么要用语音机器人?做过电话销售的都知道,每天要打的电话用海量来形容也不为过,多数电销人员有一大半的工作时间都在打电话。在这期间,空号错号、被拒接、被挂断、被情绪不稳定的客户无端斥责是常态。15378704272销售打完当天的电话量,还要熟悉房源资料、房源价格、相关......
  • 类模板案例——数组类封装(vector<>的逻辑代码)
    .hpp文件#pragma#include<iostream>usingnamespacestd;template<classT>classMy_arry{public: My_arry(intcapacity)//赋初值 { this->m_capacity=capacity;//容量 this->m_Arry_size=0;//大小 this->m_Arry_Addres=newT[capacity];......
  • 计算机组成复习——第二章机器指令知识点总结
    ......
  • 越来越多人认为像ChatGPT这样的人工智能聊天机器人是有意识的
    像ChatGPT这样先进的生成式人工智能聊天机器人是否具有某种意识或自我意识,能够像人类一样体验情感和记忆?当然不是。然而,大多数人认为这些AI机器人确实具有一定程度的意识,而这种信念可能会影响用户与它们的交互方式。过去几年,人工智能语言生成工具取得了令人难以置信的进......
  • SQL Server数据库出现逻辑错误的数据恢复
    一、常见逻辑错误类型校验和不正确(ChecksumError):这类错误通常表示数据库页中的数据在写入磁盘时与读取时不一致。可能由硬件故障、驱动程序问题或数据库文件损坏导致。逻辑I/O错误(如Error824):表示从磁盘成功读取了页面,但页面本身存在错误。这通常是由于数据库文件损坏或I/O......