首页 > 其他分享 >【Dataset】Maple-IDS - Network Security Malicious Traffic Detection Dataset

【Dataset】Maple-IDS - Network Security Malicious Traffic Detection Dataset

时间:2024-07-15 18:21:10浏览次数:15  
标签:Network Malicious IDS dataset traffic Dataset Maple

Introduction to the Dataset

The Maple-IDS dataset is a network intrusion detection evaluation dataset designed to enhance the performance and reliability of anomaly-based Intrusion Detection Systems (IDS) and Intrusion Prevention Systems (IPS). As cyber attacks become increasingly sophisticated, having a reliable and up-to-date dataset is crucial for testing and validating IDS and IPS solutions.

The dataset is released by the Network Security Laboratory of Northeast Forestry University and is available for free use and citation.

Laboratory website: Northeast Forestry University Network Security Laboratory

Background of the Dataset Release

Traditional evaluation datasets often suffer from outdated attack traffic and exploitation methods, insufficient traffic diversity, limited attack types, and a lack of features. Additionally, with the widespread adoption of HTTPS/TLS encryption, traditional datasets may not suffice. The Maple-IDS dataset addresses these challenges by providing a comprehensive, modern dataset for intrusion detection research.

Compatibility with CIC-IDS Dataset Code

If your code is designed for training or implementation with the CIC-IDS dataset, you can seamlessly switch to the Maple-IDS dataset. The Maple-IDS dataset is compatible with your previous work and can be used directly to generate CSV files using CICFlowMeter without the need for code rewrites or additional modifications.

Overview of Maple-IDS Dataset Categories (Included Content)

  • Content: The dataset includes the latest common attacks, resembling real-world network traffic (PCAP/PCAPNG format).
  • Traffic Analysis: Network traffic analysis results generated using CICFlowMeter, labeled based on timestamps, source and destination IP addresses, ports, protocols, and attack types, stored in CSV files.
  • DDoS Attacks: The dataset includes DDoS attacks, which are common in real-world network traffic. The dataset's diversity is enhanced by random content. GET, POST, HEAD, and OPTIONS are the most common HTTP methods.
  • Service-specific Traffic Packets and Datasets: We provide datasets for each service (HTTP, HTTPS, SMTP, IMAP, POP3, FTP, SSH, RESTful API, gRPC, WASM).
  • Diverse Traffic: The dataset covers various forms of DDoS, including ping, HTTP, TCP, UDP, SYN attacks, and ICMP smuggling.
  • N-day Vulnerabilities: The dataset includes n-day vulnerabilities, such as the famous HeartBleed vulnerability in OpenSSL, with plans to include more CVE vulnerabilities in the future.

Upcoming Features

  • DPDK, PF_RING Support
  • If you have any questions or suggestions, please provide feedback.

Maple-IDS Dataset Generation

We configure traffic by simulating patterns observed in real-world network traffic. Based on HTTP, HTTPS with SM3/4, GOST, and more, we construct abstract user behaviors. Modern protocols and their various implementations, such as SSH, RESTful API, gRPC, WASM, contribute to the dataset's content.

Tools Provided

During the dataset creation process, we utilized many self-developed tools. These tools are open source and available for free download. Generally, the repositories include tutorials. See: https://github.com/maple-nefu/pcap2para

More tools will be released soon. We are dedicated to improving our work and contributing to the field of malicious traffic detection research.

Dataset Download

Please log in to our laboratory's official website to download the dataset:

Northeast Forestry University Network Security Laboratory Maple Dataset site

Contact Us

If you have any questions or need assistance, please feel free to contact us:

Citation and Usage

Please cite our official publication when using our dataset. Thank you!

标签:Network,Malicious,IDS,dataset,traffic,Dataset,Maple
From: https://www.cnblogs.com/cjjcn/p/18303707

相关文章

  • 二十个基于 Python 的 NetworkX 图论算法库入门应用实例
    前言大家好,最近我在美丽的重庆度过了一段美好的学习时光。重庆以其独特的山城地貌和美食闻名,而在火锅和享受美食之余,这里的项目学习激发了我对图论的兴趣。图论是一门既古老又新兴的学科,它在计算机科学、网络分析、社会网络、物流优化等领域有着广泛的应用。而Python的......
  • mongoDB 报错 MongoNetworkError: connect ECONNREFUSED 127.0.0.1:27017 : 一个可行的
    今天启用mongoshell时发现报错如下:尝试数据指令mongod启动服务器也没有作用,上网查询解决方案后发现是没有在service里面启动mongodb服务,启动该服务后再键入mongosh命令即可正常运行mongoshell。具体操作如下:STEP1:win+R➡️输入services.msc➡️确定 STEP2:找到MongoD......
  • How to link multiple docker-compose services via network
    Howtolinkmultipledocker-composeservicesvianetworkNewscenario:SharinganetworkbetweenservicesIfyouwantdefineservicesinmultipledocker-compose.ymlfiles,andalsohavenetworkconnectivitybetweentheservices,youneedtoconfigureyou......
  • 常用koishi-plugin-network-data-getter api推荐
           随机美少女{"command":"随机美少女","desc":"","sourceUrl":"http://api.weboss.hk/random/api.php","sendType":"image","dataType":"resource"......
  • NETWORK [4] HTTP与HTTPS 协议
    HTTP协议概述        HTTP(HyperTextTransferProtocol,超文本传输协议)是用于分布式、协作式和超媒体信息系统的应用层协议。它是互联网上最广泛使用的协议之一,主要用于从万维网(WWW)服务器传输超文本到本地浏览器。HTTP是一个基于请求-响应模型的无状态协议,通常运行在TC......
  • KAN: Kolmogorov-Arnold Networks (arXiv 2024)
    KAN官方代码库:https://github.com/KindXiaoming/pykan官方tutorials:https://kindxiaoming.github.io/pykan/目录AbstractKolmogorov–ArnoldNetworks(KAN)Kolmogorov-ArnoldRepresentationtheoremKANarchitectureImplementationdetailsKAN’sApproximation......
  • TextCNN: Convolutional Neural Networks for Sentence Classification
    本文是CNN应用在NLP领域的开山之作。TextCNN的成功并不是网络结构的成功,而是通过引入已经训练好的词向量在多个数据集上达到了超越benchmark的表现,证明了构造更好的embedding,是提升NLP各项任务的关键能力。作者做了一系列实验,这些实验使用卷积神经网络(CNN)在预训练的词向量之上......
  • 读论文《OSCNet: Orientation-Shared ConvolutionalNetwork for CT Metal Artifact Le
    论文题目:面向共享的CT金属伪影学习卷积网络论文主题:金属伪影去噪论文地址:OSCNet_TMI2023.pdf-Google云端硬盘这个是oscnet+,oscnet进阶版,感觉和acdnet很像其实,本文读论文,下一篇博客讲讲复现摘要:        在本文中,我们仔细研究了具有旋转对称条纹图案的金属工件......
  • [论文阅读] Drawing and Recognizing Chinese Characters with Recurrent Neural Netw
    Pretitle:DrawingandRecognizingChineseCharacterswithRecurrentNeuralNetworksource:TPAMI2018paper:https://arxiv.org/abs/1606.06539code:https://github.com/YifeiY/hanzi_recognitionref:https://blog.csdn.net/qq_35337126/article/details/8378776......
  • mORMot虚拟数据集--TOrmTableDataSet
    如何快速显示OrmTable--可以使用TOrmTableDataSet这是mormot.db.rad.ui.orm的主要功能type///只读虚拟TDataSet,能够访问TOrmTableTOrmTableDataSet=class(TVirtualDataSet)protectedfTable:TOrmTable;//关联的TOrmTable实例{$ifndefUNICODE}//如......