首页 > 其他分享 >Topological Entropy and Chaos

Topological Entropy and Chaos

时间:2024-07-13 11:20:34浏览次数:15  
标签:compact text equation Chaos Topological times Entropy invariant minimal

Topological Entropy and Li-Yorke Chaos

"Topological entropy of maps on the real line"

Let \(X\) be a Hausdorff topological space and let \(f: X\to X\) be a continuous self-map
on \(X\). The pair \((X,f)\) is called a dynamical system.
A subset \(K\subset X\) is said to be invariant by \(f\) if \(f(K)\subset K\) and it is strictly invariant by \(f\) if \(f(K)=K\).

We summarize some properties of the topological entropy below.

Theorem 1. Let \(X\) and \(Y\) be two (metric) compact topological sets and let \(f: X \to X\) and \(g: Y \to Y\) be two continuous maps. Then the following properties are held:

(a) Let \(\phi:X\to Y\) be continuous such that \(g\circ \phi=\phi\circ f\). Then:
(a1) If the map \(\phi\) is injective, then \(h(f)\le h(g)\).
(a2) If the map \(\phi\) is surjective, then \(h(f)\ge h(g)\).
(a3) If the map \(\phi\) is bijective, then \(h(f)=h(g)\).

(b) Suppose that \(X=\cup_{i=1}^nX_i\), where \(X_i\) are compact and invariants by \(f\). Then \(h(f)=\max\{h(f|_{x_i})\}\)

(c) For any integer \(n \geqslant 0\) it is hold \(h\left(f^n\right)=n h(f)\).

(d) Let \(f \times g: X \times Y \rightarrow X \times Y\) be defined by \((f \times g)(x, y)=(f(x), g(y))\) for all \((x, y) \in\) \(X \times Y\). Then \(h(f \times g)=h(f)+h(g)\).

(e) If \(f\) is a homeomorphism, then \(h(f)=h\left(f^{-1}\right)\).

(f) Let \(\varphi: X \rightarrow Y\) be a continuous surjective map such that \(\varphi \circ f=g \circ \varphi\). Then \(\max \left\{h(g), \sup \left\{h\left(f, \varphi^{-1}(y)\right): y \in Y\right\}\right\} \leqslant h(f) \leqslant h(g)+\sup \left\{h\left(f, \varphi^{-1}(y)\right): y \in Y\right\}\).

(g) If \(f: X \rightarrow Y\) and \(g: Y \rightarrow X\) are continuous, then \(h(f \circ g)=h(g \circ f)\).

(h) Let \(f: X \rightarrow Y, g: Y \rightarrow X\) be continuous and let \(F: X \times Y \rightarrow X \times Y\) be defined by \(F(x, y)=(g(y), f(x))\) for all \((x, y) \in X \times Y\). Then

\[\begin{equation} h(F)=h(f \circ g)=h(g \circ f). \end{equation} \]

(i) If \(X_\infty=\cap_{n\ge 0}f^n(X)\) then \(h(f)=h(f|_{X_\infty})\).

(j) \(h(f)=h(f_{\Omega(f)})\) where \(x\in \Omega(f)\) if for all neighborhood \(U\) of \(x\) there is \(n\ge 0\) such that \(f^n(U)\cap U\ne \emptyset\)(\(\Omega(f)\) is called non-wandering set of \(f\)).

A dynamical system (X,f) is called minimal if X does not contain any non-empty, proper,  
closed sf-invariant subset. 

In such a case we also say that the map f itself is minimal.


The following conditions are equivalent: 
-$(X,f)$ is minimal,
-every orbit is dense in $X$, 
-$\omega_f(x)=X$ for every $x\in X$. 

Definition of topological entropy on matric space

For continuous maps on a metric space \((X,f)\) the topological entropy of \(f\) is defined by

\[\begin{equation} {\rm ent}(f):=\sup\{h(f|_K): K\subset X, \text{compact and invariant by}\, f\}. \end{equation} \]

By Theorem 1(i) we have

\[\begin{equation} {\rm ent}(f)=\sup\{h(f|_K):K\in \mathcal{K}(X,f)\} \end{equation} \]

where \(\mathcal{K}(X,f)\) is the family of all the compact subsets of \(X\) which are strictly invariant by \(f\). Notice that this definition makes sense when \(X\) is matric or simply a topological space.

Explanation/interpretation (3):

Any compact \(f\)-invariant set \(K\) determines uniquely a strictly \(f\)-invariant closed set \(K_\infty=\cap_{n\ge 0}f^n(K)\in \mathcal{K}(X,f)\) such that \(h(f|_K)=h(f|_{K_\infty})\), so

\[\begin{equation}\begin{aligned} &\{K_\infty=\cap_{n\ge 0}f^n(K):K \text{ compact and}\, f-\text{invariant}\}\\ & \subset \{K: K \text{ compact and}\, f-\text{invariant}\}. \end{aligned} \end{equation} \]

Therefore,

\[\begin{equation} \begin{aligned} {\rm ent}(f)&=\sup \{h(f|_K):K\subset X, K \text{compact and} \, f-\text{invariant}\}\\ &=\sup \{h(f|_{K_\infty}):K\subset X, K\text{compact and} \, f-\text{invariant}\}\\ &\le \sup \{h(f|_{K_\infty}):K_\infty\in \mathcal{K}(X,f)\}\\ &\le {\rm ent}(f), \end{aligned} \end{equation} \]

i.e., (3) holds.

 参考文献:

 R.L. Adler, A.G. Konheim, M.H. McAndrew, Topological entropy, *Trans. Amer. Math. Soc.* **114** (1965) 309–319.

 - R. Bowen, Entropy for group endomorphism and homogeneous spaces, *Trans. Amer. Math. Soc.* **153** (1971) 401–414.


    - J. S. Cánovas, J. M. Rodríguez, Topological entropy of maps on the real line, *Topology Appl.*, **153**(2005), 735--746.


    - T-Y. Li,  J. A. Yorke, Period three implies chaos, *Amer. Math. Monthly*, **82**(1975), 985--992.


 - J. Milnor, W. Thurston, On iterated maps of the interval, *Dynamical Systems*,  Lecture Notes in Mathematics, vol. **1342**, ed. A. Dold and B. Eckmann, Springer, Berlin, 1988: 465--563.


 - M. Rees, A minimal positive entropy homeomorphism of the 2-torus, *J. London Math. Soc.*, **23** (1981) 537–550.

 (https://londmathsoc.onlinelibrary.wiley.com/doi/epdf/10.1112/jlms/s2-23.3.537)

 - X. Ye, D-function of a minimal set and an extension of Sharkovskiĭ's theorem to minimal sets, *Ergodic Theory Dynam. Systems,*  **12**(1992), 365-376.

 (https://www.cambridge.org/core/services/aop-cambridge-core/content/view/7737952BD34F742FC1118C8353DB3CE0/S0143385700006817a.pdf/d-function-of-a-minimal-set-and-an-extension-of-sharkovskiis-theorem-to-minimal-sets.pdf)


 - http://www.scholarpedia.org/article/Minimal_dynamical_systems#Minimality_of_a_map_and_its_iterates (minimal system)

标签:compact,text,equation,Chaos,Topological,times,Entropy,invariant,minimal
From: https://www.cnblogs.com/baoju/p/18299839

相关文章

  • POJ 15221 Entropy
    题目链接:POJ1521【Entropy】思路    典型哈夫曼树,求哈夫曼树的带权路径长度。代码#include<iostream>#include<queue>#include<string>#include<cstdio>#include<algorithm>#include<map>usingnamespacestd;intmain(){strings;......
  • 如何使用EntropyReducer降低Payload的熵并进行混淆处理
    关于EntropyReducerEntropyReducer是一款针对Payload隐蔽性增强的安全工具,在该工具的帮助下,广大研究人员能够有效地降低Payload的熵,并对Payload代码使用串行链表进行混淆处理。工作机制EntropyReducer的算法由BUFF_SIZE和NULL_BYTES的值决定,下图显示的是当BUFF_SIZE被设置......
  • 【90%人不知道的状态识别/故障诊断新方法】注意熵Attention Entropy及其5种多尺度熵-M
    目录引言数据集特征提取分类器诊断流程友情提示Matlab代码下载点击链接跳转:引言注意熵(AttentionEntropy,翻译可能不准确哈,请谅解)于2023年发表在顶级期刊IEEEtrans系列-IEEETransactionsonAffectiveComputing(影响因子:11.2)。注意熵首次提出并运用于心跳间隔时......
  • 深入理解交叉熵损失 CrossEntropyLoss - CrossEntropyLoss
    深入理解交叉熵损失CrossEntropyLoss-CrossEntropyLossflyfish本系列的主要内容是在2017年所写,GPT使用了交叉熵损失函数,所以就温故而知新,文中代码又用新版的PyTorch写了一遍,在看交叉熵损失函数遇到问题时,可先看链接提供的基础知识,可以有更深的理解。深入理解交叉熵损......
  • 3. ChaosBlade-Box平台安装
    ChaosBlade-Box平台安装参考自:https://chaosblade.io/docs/about-chaosblade/box-introduce/通过ChaosBlade-Box可实现chaosblade、litmuschaos等已托管工具自动化部署,按照社区的建立的混沌实验模型统一实验场景,根据主机、Kubernetes、应用来划分目标资源,通过目标管理器......
  • 3. ChaosBlade-Box平台安装
    ChaosBlade-Box平台安装参考自:https://chaosblade.io/docs/about-chaosblade/box-introduce/通过ChaosBlade-Box可实现chaosblade、litmuschaos等已托管工具自动化部署,按照社区的建立的混沌实验模型统一实验场景,根据主机、Kubernetes、应用来划分目标资源,通过目标管理器来控制......
  • ESSEN: Improving Evolution State Estimation for Temporal Networks using Von Neum
    我们采用以下六个分类标准:研究重点:这个标准突出了研究的核心目标。网络表示学习旨在找到有效的方法,将复杂的网络结构表示在低维空间中,使其更易于分析并在机器学习任务中使用。例如,Kipf和Welling[7]引入了图卷积网络(GCN)用于静态图上的半监督分类,而Nguyen等人[1......
  • ChaosBlade混沌测试实践
    !https://zhuanlan.zhihu.com/p/700914220ChaosBlade:一个简单易用且功能强大的混沌实验实施工具官方仓库:https://github.com/chaosblade-io/chaosblade1.项目介绍ChaosBlade是阿里巴巴开源的一款遵循混沌工程原理和混沌实验模型的实验注入工具,帮助企业提升分布式系统的容......
  • 52 Things: Number 9: What are Shannon's definitions of entropy and information?
    52Things:Number9:WhatareShannon'sdefinitionsofentropyandinformation?52件事:数字9:香农对熵和信息的定义是什么?Thisisthelatestinaseriesofblogpoststoaddressthelistof'52ThingsEveryPhDStudentShouldKnowToDoCryptography':a......
  • train_transforms,Normalize,CrossEntropyLoss,optimizer,前向传播进行特征提取,反向传播优
    目录train_transforms:变换Normalize(mean=127.5,std=127.5) :缩放到[-1,1]......