首页 > 其他分享 >【人工智能】Transformers之Pipeline(概述):30w+大模型极简应用

【人工智能】Transformers之Pipeline(概述):30w+大模型极简应用

时间:2024-07-12 18:30:51浏览次数:25  
标签:available 极简 Pipeline Transformers pt else tf model type

​​​​​​​

目录

一、引言 

二、pipeline库

2.1 概述

2.2 使用task实例化pipeline对象

2.2.1 基于task实例化“自动语音识别”

2.2.2 task列表

2.2.3 task默认模型

2.3 使用model实例化pipeline对象

2.3.1 基于model实例化“自动语音识别”

 2.3.2 查看model与task的对应关系

三、总结


一、引言 

 pipeline(管道)是huggingface transformers库中一种极简方式使用大模型推理的抽象,将所有大模型分为语音(Audio)、计算机视觉(Computer vision)、自然语言处理(NLP)、多模态(Multimodal)等4大类,28小类任务(tasks)。共计覆盖32万个模型

本文对pipeline进行整体介绍,之后本专栏以每个task为主题,分别介绍各种task使用方法。

二、pipeline库

2.1 概述

管道是一种使用模型进行推理的简单而好用的方法。这些管道是从库中抽象出大部分复杂代码的对象,提供了专用于多项任务的简单 API,包括命名实体识别、掩码语言建模、情感分析、特征提取和问答。在使用上,主要有2种方法

  • 使用task实例化pipeline对象
  • 使用model实例化pipeline对象

2.2 使用task实例化pipeline对象

2.2.1 基于task实例化“自动语音识别”

自动语音识别的task为automatic-speech-recognition:

import os
os.environ["HF_ENDPOINT"] = "https://hf-mirror.com"
os.environ["CUDA_VISIBLE_DEVICES"] = "2"

from transformers import pipeline

speech_file = "./output_video_enhanced.mp3"
pipe = pipeline(task="automatic-speech-recognition")
result = pipe(speech_file)
print(result)

2.2.2 task列表

task共计28类,按首字母排序,列表如下,直接替换2.2.1代码中的pipeline的task即可应用:

2.2.3 task默认模型

针对每一个task,pipeline默认配置了模型,可以通过pipeline源代码查看:

SUPPORTED_TASKS = {
    "audio-classification": {
        "impl": AudioClassificationPipeline,
        "tf": (),
        "pt": (AutoModelForAudioClassification,) if is_torch_available() else (),
        "default": {"model": {"pt": ("superb/wav2vec2-base-superb-ks", "372e048")}},
        "type": "audio",
    },
    "automatic-speech-recognition": {
        "impl": AutomaticSpeechRecognitionPipeline,
        "tf": (),
        "pt": (AutoModelForCTC, AutoModelForSpeechSeq2Seq) if is_torch_available() else (),
        "default": {"model": {"pt": ("facebook/wav2vec2-base-960h", "55bb623")}},
        "type": "multimodal",
    },
    "text-to-audio": {
        "impl": TextToAudioPipeline,
        "tf": (),
        "pt": (AutoModelForTextToWaveform, AutoModelForTextToSpectrogram) if is_torch_available() else (),
        "default": {"model": {"pt": ("suno/bark-small", "645cfba")}},
        "type": "text",
    },
    "feature-extraction": {
        "impl": FeatureExtractionPipeline,
        "tf": (TFAutoModel,) if is_tf_available() else (),
        "pt": (AutoModel,) if is_torch_available() else (),
        "default": {
            "model": {
                "pt": ("distilbert/distilbert-base-cased", "935ac13"),
                "tf": ("distilbert/distilbert-base-cased", "935ac13"),
            }
        },
        "type": "multimodal",
    },
    "text-classification": {
        "impl": TextClassificationPipeline,
        "tf": (TFAutoModelForSequenceClassification,) if is_tf_available() else (),
        "pt": (AutoModelForSequenceClassification,) if is_torch_available() else (),
        "default": {
            "model": {
                "pt": ("distilbert/distilbert-base-uncased-finetuned-sst-2-english", "af0f99b"),
                "tf": ("distilbert/distilbert-base-uncased-finetuned-sst-2-english", "af0f99b"),
            },
        },
        "type": "text",
    },
    "token-classification": {
        "impl": TokenClassificationPipeline,
        "tf": (TFAutoModelForTokenClassification,) if is_tf_available() else (),
        "pt": (AutoModelForTokenClassification,) if is_torch_available() else (),
        "default": {
            "model": {
                "pt": ("dbmdz/bert-large-cased-finetuned-conll03-english", "f2482bf"),
                "tf": ("dbmdz/bert-large-cased-finetuned-conll03-english", "f2482bf"),
            },
        },
        "type": "text",
    },
    "question-answering": {
        "impl": QuestionAnsweringPipeline,
        "tf": (TFAutoModelForQuestionAnswering,) if is_tf_available() else (),
        "pt": (AutoModelForQuestionAnswering,) if is_torch_available() else (),
        "default": {
            "model": {
                "pt": ("distilbert/distilbert-base-cased-distilled-squad", "626af31"),
                "tf": ("distilbert/distilbert-base-cased-distilled-squad", "626af31"),
            },
        },
        "type": "text",
    },
    "table-question-answering": {
        "impl": TableQuestionAnsweringPipeline,
        "pt": (AutoModelForTableQuestionAnswering,) if is_torch_available() else (),
        "tf": (TFAutoModelForTableQuestionAnswering,) if is_tf_available() else (),
        "default": {
            "model": {
                "pt": ("google/tapas-base-finetuned-wtq", "69ceee2"),
                "tf": ("google/tapas-base-finetuned-wtq", "69ceee2"),
            },
        },
        "type": "text",
    },
    "visual-question-answering": {
        "impl": VisualQuestionAnsweringPipeline,
        "pt": (AutoModelForVisualQuestionAnswering,) if is_torch_available() else (),
        "tf": (),
        "default": {
            "model": {"pt": ("dandelin/vilt-b32-finetuned-vqa", "4355f59")},
        },
        "type": "multimodal",
    },
    "document-question-answering": {
        "impl": DocumentQuestionAnsweringPipeline,
        "pt": (AutoModelForDocumentQuestionAnswering,) if is_torch_available() else (),
        "tf": (),
        "default": {
            "model": {"pt": ("impira/layoutlm-document-qa", "52e01b3")},
        },
        "type": "multimodal",
    },
    "fill-mask": {
        "impl": FillMaskPipeline,
        "tf": (TFAutoModelForMaskedLM,) if is_tf_available() else (),
        "pt": (AutoModelForMaskedLM,) if is_torch_available() else (),
        "default": {
            "model": {
                "pt": ("distilbert/distilroberta-base", "ec58a5b"),
                "tf": ("distilbert/distilroberta-base", "ec58a5b"),
            }
        },
        "type": "text",
    },
    "summarization": {
        "impl": SummarizationPipeline,
        "tf": (TFAutoModelForSeq2SeqLM,) if is_tf_available() else (),
        "pt": (AutoModelForSeq2SeqLM,) if is_torch_available() else (),
        "default": {
            "model": {"pt": ("sshleifer/distilbart-cnn-12-6", "a4f8f3e"), "tf": ("google-t5/t5-small", "d769bba")}
        },
        "type": "text",
    },
    # This task is a special case as it's parametrized by SRC, TGT languages.
    "translation": {
        "impl": TranslationPipeline,
        "tf": (TFAutoModelForSeq2SeqLM,) if is_tf_available() else (),
        "pt": (AutoModelForSeq2SeqLM,) if is_torch_available() else (),
        "default": {
            ("en", "fr"): {"model": {"pt": ("google-t5/t5-base", "686f1db"), "tf": ("google-t5/t5-base", "686f1db")}},
            ("en", "de"): {"model": {"pt": ("google-t5/t5-base", "686f1db"), "tf": ("google-t5/t5-base", "686f1db")}},
            ("en", "ro"): {"model": {"pt": ("google-t5/t5-base", "686f1db"), "tf": ("google-t5/t5-base", "686f1db")}},
        },
        "type": "text",
    },
    "text2text-generation": {
        "impl": Text2TextGenerationPipeline,
        "tf": (TFAutoModelForSeq2SeqLM,) if is_tf_available() else (),
        "pt": (AutoModelForSeq2SeqLM,) if is_torch_available() else (),
        "default": {"model": {"pt": ("google-t5/t5-base", "686f1db"), "tf": ("google-t5/t5-base", "686f1db")}},
        "type": "text",
    },
    "text-generation": {
        "impl": TextGenerationPipeline,
        "tf": (TFAutoModelForCausalLM,) if is_tf_available() else (),
        "pt": (AutoModelForCausalLM,) if is_torch_available() else (),
        "default": {"model": {"pt": ("openai-community/gpt2", "6c0e608"), "tf": ("openai-community/gpt2", "6c0e608")}},
        "type": "text",
    },
    "zero-shot-classification": {
        "impl": ZeroShotClassificationPipeline,
        "tf": (TFAutoModelForSequenceClassification,) if is_tf_available() else (),
        "pt": (AutoModelForSequenceClassification,) if is_torch_available() else (),
        "default": {
            "model": {
                "pt": ("facebook/bart-large-mnli", "c626438"),
                "tf": ("FacebookAI/roberta-large-mnli", "130fb28"),
            },
            "config": {
                "pt": ("facebook/bart-large-mnli", "c626438"),
                "tf": ("FacebookAI/roberta-large-mnli", "130fb28"),
            },
        },
        "type": "text",
    },
    "zero-shot-image-classification": {
        "impl": ZeroShotImageClassificationPipeline,
        "tf": (TFAutoModelForZeroShotImageClassification,) if is_tf_available() else (),
        "pt": (AutoModelForZeroShotImageClassification,) if is_torch_available() else (),
        "default": {
            "model": {
                "pt": ("openai/clip-vit-base-patch32", "f4881ba"),
                "tf": ("openai/clip-vit-base-patch32", "f4881ba"),
            }
        },
        "type": "multimodal",
    },
    "zero-shot-audio-classification": {
        "impl": ZeroShotAudioClassificationPipeline,
        "tf": (),
        "pt": (AutoModel,) if is_torch_available() else (),
        "default": {
            "model": {
                "pt": ("laion/clap-htsat-fused", "973b6e5"),
            }
        },
        "type": "multimodal",
    },
    "image-classification": {
        "impl": ImageClassificationPipeline,
        "tf": (TFAutoModelForImageClassification,) if is_tf_available() else (),
        "pt": (AutoModelForImageClassification,) if is_torch_available() else (),
        "default": {
            "model": {
                "pt": ("google/vit-base-patch16-224", "5dca96d"),
                "tf": ("google/vit-base-patch16-224", "5dca96d"),
            }
        },
        "type": "image",
    },
    "image-feature-extraction": {
        "impl": ImageFeatureExtractionPipeline,
        "tf": (TFAutoModel,) if is_tf_available() else (),
        "pt": (AutoModel,) if is_torch_available() else (),
        "default": {
            "model": {
                "pt": ("google/vit-base-patch16-224", "3f49326"),
                "tf": ("google/vit-base-patch16-224", "3f49326"),
            }
        },
        "type": "image",
    },
    "image-segmentation": {
        "impl": ImageSegmentationPipeline,
        "tf": (),
        "pt": (AutoModelForImageSegmentation, AutoModelForSemanticSegmentation) if is_torch_available() else (),
        "default": {"model": {"pt": ("facebook/detr-resnet-50-panoptic", "fc15262")}},
        "type": "multimodal",
    },
    "image-to-text": {
        "impl": ImageToTextPipeline,
        "tf": (TFAutoModelForVision2Seq,) if is_tf_available() else (),
        "pt": (AutoModelForVision2Seq,) if is_torch_available() else (),
        "default": {
            "model": {
                "pt": ("ydshieh/vit-gpt2-coco-en", "65636df"),
                "tf": ("ydshieh/vit-gpt2-coco-en", "65636df"),
            }
        },
        "type": "multimodal",
    },
    "object-detection": {
        "impl": ObjectDetectionPipeline,
        "tf": (),
        "pt": (AutoModelForObjectDetection,) if is_torch_available() else (),
        "default": {"model": {"pt": ("facebook/detr-resnet-50", "2729413")}},
        "type": "multimodal",
    },
    "zero-shot-object-detection": {
        "impl": ZeroShotObjectDetectionPipeline,
        "tf": (),
        "pt": (AutoModelForZeroShotObjectDetection,) if is_torch_available() else (),
        "default": {"model": {"pt": ("google/owlvit-base-patch32", "17740e1")}},
        "type": "multimodal",
    },
    "depth-estimation": {
        "impl": DepthEstimationPipeline,
        "tf": (),
        "pt": (AutoModelForDepthEstimation,) if is_torch_available() else (),
        "default": {"model": {"pt": ("Intel/dpt-large", "e93beec")}},
        "type": "image",
    },
    "video-classification": {
        "impl": VideoClassificationPipeline,
        "tf": (),
        "pt": (AutoModelForVideoClassification,) if is_torch_available() else (),
        "default": {"model": {"pt": ("MCG-NJU/videomae-base-finetuned-kinetics", "4800870")}},
        "type": "video",
    },
    "mask-generation": {
        "impl": MaskGenerationPipeline,
        "tf": (),
        "pt": (AutoModelForMaskGeneration,) if is_torch_available() else (),
        "default": {"model": {"pt": ("facebook/sam-vit-huge", "997b15")}},
        "type": "multimodal",
    },
    "image-to-image": {
        "impl": ImageToImagePipeline,
        "tf": (),
        "pt": (AutoModelForImageToImage,) if is_torch_available() else (),
        "default": {"model": {"pt": ("caidas/swin2SR-classical-sr-x2-64", "4aaedcb")}},
        "type": "image",
    },
}

2.3 使用model实例化pipeline对象

2.3.1 基于model实例化“自动语音识别”

如果不想使用task中默认的模型,可以指定huggingface中的模型:

import os
os.environ["HF_ENDPOINT"] = "https://hf-mirror.com"
os.environ["CUDA_VISIBLE_DEVICES"] = "2"

from transformers import pipeline

speech_file = "./output_video_enhanced.mp3"
#transcriber = pipeline(task="automatic-speech-recognition", model="openai/whisper-medium")
pipe = pipeline(model="openai/whisper-medium")
result = pipe(speech_file)
print(result)

 2.3.2 查看model与task的对应关系

可以登录https://huggingface.co/tasks查看

三、总结

本文为transformers之pipeline专栏的第0篇,后面会以每个task为一篇,共计讲述28+个tasks的用法,通过28个tasks的pipeline使用学习,可以掌握语音、计算机视觉、自然语言处理、多模态乃至强化学习等30w+个huggingface上的开源大模型。让你成为大模型领域的专家!

期待您的3连+关注,如何还有时间,欢迎阅读我的其他文章:

《AI—工程篇》

AI智能体研发之路-工程篇(一):Docker助力AI智能体开发提效

AI智能体研发之路-工程篇(二):Dify智能体开发平台一键部署

AI智能体研发之路-工程篇(三):大模型推理服务框架Ollama一键部署

AI智能体研发之路-工程篇(四):大模型推理服务框架Xinference一键部署

AI智能体研发之路-工程篇(五):大模型推理服务框架LocalAI一键部署

《AI—模型篇》

AI智能体研发之路-模型篇(一):大模型训练框架LLaMA-Factory在国内网络环境下的安装、部署及使用

AI智能体研发之路-模型篇(二):DeepSeek-V2-Chat 训练与推理实战

AI智能体研发之路-模型篇(三):中文大模型开、闭源之争

AI智能体研发之路-模型篇(四):一文入门pytorch开发

AI智能体研发之路-模型篇(五):pytorch vs tensorflow框架DNN网络结构源码级对比

AI智能体研发之路-模型篇(六):【机器学习】基于tensorflow实现你的第一个DNN网络

AI智能体研发之路-模型篇(七):【机器学习】基于YOLOv10实现你的第一个视觉AI大模型

AI智能体研发之路-模型篇(八):【机器学习】Qwen1.5-14B-Chat大模型训练与推理实战

AI智能体研发之路-模型篇(九):【机器学习】GLM4-9B-Chat大模型/GLM-4V-9B多模态大模型概述、原理及推理实战

《AI—Transformers应用》

【AI大模型】Transformers大模型库(一):Tokenizer

【AI大模型】Transformers大模型库(二):AutoModelForCausalLM

【AI大模型】Transformers大模型库(三):特殊标记(special tokens)

【AI大模型】Transformers大模型库(四):AutoTokenizer

【AI大模型】Transformers大模型库(五):AutoModel、Model Head及查看模型结构

标签:available,极简,Pipeline,Transformers,pt,else,tf,model,type
From: https://blog.csdn.net/weixin_48007632/article/details/140319929

相关文章

  • 学习AI大模型,入门小白必看!应用开发极简入门PDF来了!
    人工智能大潮已来,不加入就可能被淘汰。就好像现在职场里谁不会用PPT和excel一样,基本上你见不到。而大模型是人工智能代表,潜力与使用方式有关。使用好大模型可提高效率,让人获得更好的待遇和更多机会。你发现PPT和excel用的好的PPT一看就惊艳,excel用的特别熟练,你这个数据分......
  • go并发模式 pipeline
    packagemainimport("fmt""math/rand")funcmain(){pFn:=func(done<-chaninterface{},fnfunc()int)<-chanint{valueStream:=make(chanint)gofunc(){deferclose(valueStream)......
  • pipeline 显示获取git分支
    pipeline{agentanyparameters{gitParameter(branchFilter:'origin/(.*)',//高级中设置为这个defaultValue:'master',name:'BRANCH',type:'PT_BRANCH',useRepository:'https://gitlab.lingtingshidai.com/lt/java/lt-......
  • 使用Blue Ocean生成Pipeline
    该教程展示如何使用Jenkins的 BlueOcean 特性生成一个流水线,该流水线将协调构建一个简单的应用程序。在学习本教程前,建议您先从Tutorialsoverview 页面至少浏览一组入门教程来熟悉CI/CD概念(与你最熟悉的技术栈有)以及这些概念是如何在Jenkins中实现的。Jenkins.......
  • c语言实战-极简扫雷
    C语言/c++写的C语言实战项目扫雷结构比较清晰,仅供参考:核心是扫雷的递归算法实现上代码:#include<stdio.h>#include<stdlib.h>#include<time.h>#defineSIZE10#defineMINES15charboard[SIZE][SIZE];//游戏棋盘//初始化棋盘,'-'表示未揭示的区域voidinit......
  • 4.6 pipeline 生产配置实例
    pipeline配置java项目pipeline{agent{label'slave'}options{timestamps()disableConcurrentBuilds()buildDiscarder(logRotator(numToKeepStr:'20',daysToKee......
  • 一起学Hugging Face Transformers(13)- 模型微调之自定义训练循环
    文章目录前言一、什么是训练循环1.训练循环的关键步骤2.示例3.训练循环的重要性二、使用HuggingFaceTransformers库实现自定义训练循环1.前期准备1)安装依赖2)导入必要的库2.加载数据和模型1)加载数据集2)加载预训练模型和分词器3)预处理数据4)创建数据加载器3......
  • Python极简美学:用一行代码完成的26个日常任务!
    Python以其简洁优雅著称,能够用最少的代码行数实现强大的功能。本文特别为Python初学者设计,旨在展示Python如何以一行代码解决常见的编程任务,让你体验Python的极简美学。通过这些实例,你不仅能够学习到Python的基础知识,还能掌握一些高效编码的小技巧。1.计算列表平均值number......
  • 【spring】(极简版)
    spring的核心就是控制反转和依赖注入,说人话就是把对象交给spring容器管理搭建一个spring非常简单项目结构(简单吧)第一步,创建一个空的Maven项目并在pom.xml中导入依赖(其实spring的依赖只用spring-context就可以了,不过我习惯用单元测试,所有导了个junit的包,如果不导junit,用mai......
  • Jenkins从0-1搭建--基于pipeline构建发布简单项目
    目录一、新建流水线任务二、参数化构建过程1.服务器选项2.项目分支3.发布环境三、编写流水线脚本3.1sshPublisher机器IP设置:3.2水流线代码四、流水线语法一、新建流水线任务二、参数化构建过程1.服务器选项value里面填写服务器ip 2.项目分支默认dev 3.发......