首页 > 其他分享 >大话光学原理:3.干涉与衍射

大话光学原理:3.干涉与衍射

时间:2024-07-10 10:31:03浏览次数:15  
标签:托马斯 衍射 大话 波动 菲涅尔 波谷 波峰 干涉 光学

一、干涉

        这是一束孤独的光,在真空的无垠中悄无声息地穿行。忽然,一堵高耸的墙壁挡住了它的去路,它别无选择,只能硬着头皮冲撞而去。在摸索中,它意外地发现墙壁上竟有两道孔隙,笔直而细长,宛如量身定做,似乎在等待着它轻盈的穿透。然而,刚刚逃脱束缚,一道新的屏障又挡在眼前,光不得不勇敢地投入它的怀抱。出乎意料的是,这屏障上展现的并非两道与孔隙对应的细线,而是一系列明暗交替的条纹。

        上述情景出现在被誉为物理学史上十大经典实验之一的“杨氏双缝干涉”中,光线在后方的影壁上描绘出令人惊叹的干涉条纹。这项实验的幕后英雄是托马斯·杨,他于1773年在英国萨默塞特郡一个富裕的贵格会家庭降生,他的祖父家中藏书丰富,多达万卷。

        托马斯在书香的熏陶下长大,自小就展现出非凡的才华。据说他在2岁时就能流畅地朗读英文,到了16岁,他已经精通拉丁语、希腊语、法语、意大利语,甚至包括东方语言的希伯来语、波斯语和阿拉伯语在内的12门语言。随着视野的扩大,他对自然科学的热爱也与日俱增。还在中学时期,他就自学了牛顿的经典著作《自然哲学的数学原理》,并深入研究了海峡对岸刚刚问世的《化学基础论》。

        大约在1800年,托马斯在阅读牛顿的《光学》时,发现用微粒学说来解释著名的“牛顿环”现象似乎不太合理。那些明暗交替、错落有致的同心圆,看上去并不像是直线运动的粒子所能创造出的作品。托马斯心中不禁生疑:如果光不是由微粒组成,那么它究竟是什么呢?

        托马斯陷入了沉思,手中的书本悄然合上,他的步伐不由自主地走到了书房的另一头。停在那里,他的手指轻拂过角落里静静躺着的大提琴。琴弦随之颤动,那几个简单的音符穿空而过,轻盈地飘入托马斯的耳中,旋即在脑中迸发出轰鸣。声音,这位他多年的旅伴,就这样不经意间闯入了他的思想领地。

        他沉浸在这思考的海洋中,那时候人们已经明白,声音是以波的形式传播。托马斯自问,光的行为是否也能用这样的波动模式来阐释?正如声音能穿越门缝,弥漫整个房间,如果光也是波,那它穿越窄缝,不也是为了向四面八方扩散吗?

        他回想起牛顿关于白光通过棱镜分解成不同颜色光的解释,每种颜色的光都有其独特的折射率。托马斯继续思考,根据费马原理,光的折射率与光在不同介质中的传播速度比值有关。在此基础上,他提出了自己的假设:单色光的传播速度可能与它的波长这一波动特性有关。这个名字本身就透露出波长是波动的一个基本属性。

        作为一名才华横溢的理论家,托马斯不仅巧妙地运用“波动说”对各种光学现象进行了全新的解读,更是借助牛顿遗留的宝贵实验数据,准确地推算出了彩虹两端的红光与紫光的波长。他的研究成果经过无数次的验证,竞与现代仪器的测量结果惊人地一致。

二、衍射

       这是一束从光源中诞生的光辉,它无私地朝四面八方扩散开去。不远处,一只沉甸甸的圆盘静静悬吊,似乎无法抵挡光的力量。无奈之下,光只得将自己分解,轻柔地沿着圆盘的边缘悄悄滑行。就在这时,圆盘另一侧的屏壁上,本应是完全的黑暗之处,却意外地映照出了它的亮丽身影——一小块明亮的光斑。这是何种奇妙的景象?光线明明未能穿透圆盘,却在其领域中留下了独特的痕迹。

        在1817年的法国,科学院为了彻底解决关于“光的本质”的争论,设立了一个Grand Prix奖项,旨在鼓励研究者们深入探讨光的奇异现象并提供实证。这一举措激发了29岁的路桥工程师奥古斯丁·菲涅尔对光学的浓厚兴趣。尽管他身为保皇派,曾在拿破仑的“百日王朝”期间短暂入狱,但那段自由的时光却点燃了他对学术的渴望。

        菲涅尔独立推导出了与托马斯·杨相同的结论:光必须被视为波动,才能解释牛顿环等光学现象。当他得知科学院的奖项后,他迅速提交了一份长达135页的论文,不仅用数学语言详尽描述了光的波动性,还大胆地提出光是一种横波。由于缺乏竞争对手,菲涅尔轻松赢得了大奖。

        然而,法国科学院的领袖们,包括天文学家拉普拉斯、数学家泊松和物理学家波耶特,都是牛顿光学的坚定拥护者。泊松,这位数学天才,挑选了菲涅尔论文中的一个数学模型进行深入研究。他自信地认为,波动说在深入分析下必然漏洞百出。他计算出,如果光真是波动的,那么在圆盘背后的屏壁上,应该会出现一个明亮的光斑,这显然违反常理。

        泊松兴奋地将这一发现带给评审团,坚信自己已经揭开了波动说的真相。评审们虽然不愿相信菲涅尔的预言,但他们坚持用数据说话。在评审主席阿拉贡的带领下,他们进行了一次公开实验。1719年3月的一天,惊人的景象出现了:在所有人的注视下,圆心深处的暗影中突然闪现出一小块明亮的光斑,周围环绕着明暗交替的细环。这个光斑,后来被称为“泊松斑”。

        菲涅尔凭借其敏锐的洞察力,终于为波动说找到了立足之地。而泊松,虽然初衷是为了反驳波动说,却因为从菲涅尔的报告中推导出了这一非凡结果,意外地获得了这个光斑的命名权。

        在光的奇妙世界里,反射与折射有着清晰的界定,但干涉与衍射却如同一对亲密无间的舞伴,界限模糊,共同演绎着光穿越边界的神秘舞蹈。想象一下,当一束微光轻抚过一道狭缝,或几点星光轻轻掠过两条细缝时,它们交织出的便是干涉的旋律;而当我们面对的是一片光源,如同一团光亮穿透多个孔洞或环抱整个圆盘时,展现的则是衍射的壮观。

        让我们具体一些来说,干涉就像是两支乐队在同一频率上奏响相同的旋律,它们在相遇的舞台上,有的地方声音洪亮,有的地方却渐渐低沉,这种声音的强弱变化就像是在空间中跳动的节奏。

        衍射则像是光在曲折的小径上探险,绕过障碍物,进入那些本该是黑暗的角落,在屏幕上留下斑驳的光影。

        其实,我们眼前的每一幅光影画卷,都是干涉与衍射共同编织的杰作。

        就像菲涅尔曾经设想的那样,光就像是一列横波,就像把一颗石子扔进水中,涟漪沿着水面扩散,而石子的振动却与涟漪传播的方向垂直。波在介质中传播,就像涟漪一圈圈向外荡漾,如果你固定观察一点,会发现它的高低起伏,这就是波长与频率的奥秘。

        现在,想象一下,如果你在平静的水面上同时扔下两颗石子,两列波相遇时的情景:波峰与波峰相遇,如同山峰叠加,形成更高的峰;波谷与波谷相遇,则像是深谷叠加,变得更加深邃。而如果波峰与波谷相遇,它们就像是一正一负的力量相互抵消,水面恢复平静,仿佛什么都没发生过。

        在思考的海洋中,我们是不是忽然想起了那个著名的实验——托马斯·杨的双缝干涉。想象一下,当光作为一列横波穿越狭缝时,它的行为多么奇妙:仿佛是一位机智的舞者,为了穿越障碍,不得不分成两路轻盈地舞动。随后,这两束光线在另一片舞台上再次相遇。当波峰与波峰相拥,或波谷与波谷相合,它们的力量相加,便在幕墙上绽放出明亮的条纹;而波峰与波谷相撞,力量相互抵消,只留下幽暗的痕迹。

        就像这样,如果你将泊松亮斑一点点放大,会发现它并非孤立的亮点,而是周围环绕着层层叠叠的光圈。这些光圈是由悄悄潜入阴影中的波群相互交织、消长而成的,宛如一场光的交响乐。

        当我们把光视为横波,那些关于干涉与衍射的谜团便逐一解开。费马大师在光的旅途中发现了速率的关键性,而托马斯·杨则揭示了光在介质中的传播速率与波长之间的秘密。这样一来,即使是曾经坚定支持微粒说的现象,如折射、反射,以及由此衍生出的复杂现象,如散射、偏振,都能被波动说完美地包容。

        光似乎松了一口气,关于其本质的谜团终于水落石出:原来,我是一列波。

        但还有一个疑问悬而未决:既然“波一族”依赖于介质传播,就像声波能在空气、液体和固体中自由穿行,但在真空中却步履维艰。没有桥,声音如何传到对岸?水波也是如此,没有水,哪里还有波?然而,光却能穿越真空,速度甚至比在其他介质中更快。这背后的秘密似乎只有一个——光在真空中化身为粒子,自由穿梭于无垠的宇宙之中。

标签:托马斯,衍射,大话,波动,菲涅尔,波谷,波峰,干涉,光学
From: https://blog.csdn.net/qq_53529450/article/details/140307538

相关文章

  • 大话C语言:第29篇 指针
    1指针概念指针:地址的变量化形式,其存储的是内存中某个存储单元的地址。它是地址的数值表示。指针变量:一种特殊的变量,它专门用于存放变量的地址(即指针)。注意,指针和指针变量的区别:指针本身是一个地址,这个地址指向内存中的一个存储单元。它只是一个内存地址的抽象表示,没......
  • 大话C语言:第26篇 静态库
    1静态库概述C语言静态库(StaticLibrary)是一种包含一组目标文件的归档文件,这些目标文件通常是由多个C语言源文件编译而成的。静态库在程序编译时被链接到目标程序中,成为程序的一部分,因此在运行时不再需要额外的库文件。与动态库(DynamicLibrary)不同,静态库在编译时就已经被完全......
  • PCIe 7.0首次引入光学:满血带宽高达512GB/s
    PCIe6.0标准规范于2022年初正式发布,至今尚未商用落地,而新一代PCIe7.0已经徐徐走来,首次引入光学通信连接。PCIe6.0被认为是PCIe问世近20年以来变化最大的一次,信号调制机制改为PAM4,配套支持FEC前向纠错机制、FLIT流量控制单元编码,带宽继续翻番,x16双向可达256GB/s。但是到了这里......
  • 大话考研数据结构:第3篇 数据结构的基本概念(下)
    1数据结构        数据结构(datastructure)是指相互之间存在一种或多种特定关系的数据元素的集合。现实世界中,任何的数据元素并非孤立存在的,它们之间存在千丝万缕的某种关系,它们的这种称之为“结构”。简而言之,数据结构是相互之间存在一种或多种特定关系的数据元素的......
  • [设计模式 1] 设计模式笔记(大话设计模式总结)
    设计模式总结(java版1)1.简单工厂模式需求:设计一个计算器,有一个抽象的运算类,他里边有两个数字属性和一个getResult()抽象方法,这个类被四个加减乘除的具体的算法类继承,然后有一个简单工厂类,这个简称工厂类是用来生成一个具体的运算类的,然后就在简单工厂类里有一个逻辑的判......
  • 【大学物理】波动光学速成
     考点1光的干涉条件考点2杨氏双缝干涉s1为单峰屏,s2为双缝屏s为点光源,s1,s2为波阵面上两点,为新的子波波源p的坐标为x劳埃德镜实验:半波损失菲涅耳双镜实验考点3光程考点4等倾干涉......
  • 大话BLDC驱动:怎么根据HALL信号换相
    根据《大话BLDC驱动:为什么可以根据HALL信号换相?》文中内容,我们知道HALL信号实时反应了电机转子的位置,所以,针对有感BLDC,我们当然可以根据HALL信号进行换相。那么,问题来了,根据HALL信号换相的方法及其步骤是什么?有什么细节?有什么要注意?本文就来梳理一下。1.有感BLDC8线接口定义3......
  • 打破传统光学 突破性进展频发Nature Science揭示光学未来新方向
       第一天光学基础STUDY第一节深度学习与光学设计 1.1光学设计概述 1.2深度学习在成像光学系统的应用 1.3深度学习在光子器件的应用 1.4深度学习光学设计的优势 1.5深度学习光学设计的发展趋势与挑战第二节光学基础 2.1几何光学基本定理 2.1.......
  • 光学雨量计雨量传感器的原理与工作机制
    光学雨量计雨量传感器的原理与工作机制光学雨量计是一种常用的雨量传感器,它通过光学原理来测量雨量。光学雨量计的工作机制可以简单概括为:通过发射光束和接收散射光来判断雨滴的存在,并根据雨滴的数量和大小来计算雨量。 光学雨量计的核心部分是一个发射器和一个接收器。发射......
  • 光学雨量计:高精度测量降水量的理想解决方案
    光学雨量计:高精度测量降水量的理想解决方案河北稳控科技光学雨量计是一种高精度测量降水量的理想解决方案。它利用光学原理,通过光束的衰减来测量降雨强度和累积降水量。相比传统的雨量计,光学雨量计具有更高的精度和可靠性,成为现代气象观测的重要工具。 传统的雨量计通过测量......