首页 > 其他分享 >变分自编码器(七):球面上的VAE(vMF-VAE)

变分自编码器(七):球面上的VAE(vMF-VAE)

时间:2024-07-08 16:44:38浏览次数:19  
标签:采样 编码器 kappa Vert vMF varphi VAE mu

《变分自编码器(五):VAE + BN = 更好的VAE》中,我们讲到了NLP中训练VAE时常见的KL散度消失现象,并且提到了通过BN来使得KL散度项有一个正的下界,从而保证KL散度项不会消失。事实上,早在2018年的时候,就有类似思想的工作就被提出了,它们是通过在VAE中改用新的先验分布和后验分布,来使得KL散度项有一个正的下界。

该思路出现在2018年的两篇相近的论文中,分别是《Hyperspherical Variational Auto-Encoders》《Spherical Latent Spaces for Stable Variational Autoencoders》,它们都是用定义在超球面的von Mises–Fisher(vMF)分布来构建先后验分布。某种程度上来说,该分布比我们常用的高斯分布还更简单和有趣~

KL散度消失 #

我们知道,VAE的训练目标是
\begin{equation}\mathcal{L} = \mathbb{E}_{x\sim \tilde{p}(x)} \Big[\mathbb{E}_{z\sim p(z|x)}\big[-\log q(x|z)\big]+KL\big(p(z|x)\big\Vert q(z)\big)\Big]
\end{equation}
其中第一项是重构项,第二项是KL散度项,在《变分自编码器(一):原来是这么一回事》中我们就说过,这两项某种意义上是“对抗”的,KL散度项的存在,会加大解码器利用编码信息的难度,如果KL散度项为0,那么说明解码器完全没有利用到编码器的信息。

在NLP中,输入和重构的对象是句子,为了保证效果,解码器一般用自回归模型。然而,自回归模型是非常强大的模型,强大到哪怕没有输入,也能完成训练(退化为无条件语言模型),而刚才我们说了,KL散度项会加大解码器利用编码信息的难度,所以解码器干脆弃之不用,这就出现了KL散度消失现象。

早期比较常见的应对方案是逐渐增加KL项的权重,以引导解码器去利用编码信息。现在比较流行的方案就是通过某些改动,直接让KL散度项有一个正的下界。将先后验分布换为vMF分布,就是这种方案的经典例子之一。

vMF分布 #

vMF分布是定义在$d-1$维超球面的分布,其样本空间为$S^{d-1}=\{x|x\in\mathbb{R}^d, \Vert x\Vert=1\}$,概率密度函数则为
\begin{equation}p(x) = \frac{e^{\langle\xi,x\rangle}}{Z_{d, \Vert\xi\Vert}},\quad Z_{d, \Vert\xi\Vert}=\int_{S^{d-1}}e^{\langle\xi,x\rangle} dS^{d-1}\end{equation}
其中$\xi\in\mathbb{R}^d$是预先给定的参数向量。不难想象,这是$S^{d-1}$上一个以$\xi$为中心的分布,归一化因子写成$Z_{d, \Vert\xi\Vert}$的形式,意味着它只依赖于$\xi$的模长,这是由于各向同性导致的。由于这个特性,vMF分布更常见的记法是设$\mu=\xi/\Vert\xi\Vert, \kappa=\Vert\xi\Vert, C_{d,\kappa}=1/Z_{d, \Vert\xi\Vert}$,从而
\begin{equation}p(x) = C_{d,\kappa} e^{\kappa\langle\mu,x\rangle}\end{equation}
这时候$\langle\mu,x\rangle$就是$\mu,x$的夹角余弦,所以说,vMF分布实际上就是以余弦相似度为度量的一种分布。由于我们经常用余弦值来度量两个向量的相似度,因此基于vMF分布做出来的模型,通常更能满足我们的这个需求。当$\kappa=0$的时候,vMF分布是球面上的均匀分布。

从归一化因子$Z_{d, \Vert\xi\Vert}$的积分形式来看,它实际上也是vMF的母函数,从而vMF的各阶矩也可以通过$Z_{d, \Vert\xi\Vert}$来表达,比如一阶矩为
\begin{equation}\mathbb{E}_{x\sim p(x)} [x] = \nabla_{\xi} \log Z_{d, \Vert\xi\Vert}=\frac{d \log Z_{d,\Vert\xi\Vert}}{d\Vert\xi\Vert}\frac{\xi}{\Vert\xi\Vert}\end{equation}
可以看到$\mathbb{E}_{x\sim p(x)} [x]$在方向上跟$\xi$一致。$Z_{d, \Vert\xi\Vert}$的精确形式可以算出来,但比较复杂,而且很多时候我们也不需要精确知道这个归一化因子,所以这里我们就不算了。

至于参数$\kappa$的含义,或许设$\tau=1/\kappa$我们更好理解,此时$p(x)\sim e^{\langle\mu,x\rangle/\tau}$,熟悉能量模型的同学都知道,这里的$\tau$就是温度参数,如果$\tau$越小($\kappa$越大),那么分布就越集中在$\mu$附近,反之则越分散(越接近球面上的均匀分布)。因此,$\kappa$也被形象地称为“凝聚度(concentration)”参数。

从vMF采样 #

对于vMF分布来说,需要解决的第一个难题是如何实现从它里边采样出具体的样本来。尤其是如果我们要将它应用到VAE中,那么这一步是至关重要的。

均匀分布 #

最简单是$\kappa=0$的情形,也就是$d-1$维球面上的均匀分布,因为标准正态分布本来就是各向同性的,其概率密度正比于$e^{-\Vert x\Vert^2/2}$只依赖于模长,所以我们只需要从$d$为标准正态分布中采样一个$z$,然后让$x=z/\Vert z\Vert$就得到了球面上的均匀采样结果。

特殊方向 #

接着,对于$\kappa > 0$的情形,我们记$x=[x_1,x_2,\cdots,x_d]$,首先考虑一种特殊的情况:$\mu = [1, 0, \cdots, 0]$。事实上,由于各向同性的原因,很多时候我们都只需要考虑这个特殊情况,然后就可以平行地推广到一般情形。

此时概率密度正比于$e^{\kappa x_1}$,然后我们转换到球坐标系:
\begin{equation}
\left\{\begin{aligned}
x_1 &= \cos\varphi_1\\
x_2 &= \sin\varphi_1 \cos\varphi_2 \\
x_3 &= \sin\varphi_1 \sin\varphi_2 \cos\varphi_3 \\
&\,\,\vdots \\
x_{d-1} &= \sin\varphi_1 \cdots \sin\varphi_{d-2} \cos\varphi_{d-1}\\
x_d &= \sin\varphi_1 \cdots \sin\varphi_{d-2} \sin\varphi_{d-1}
\end{aligned}\right.
\end{equation}
那么(超球坐标的积分变换,请直接参考“维基百科”)
\begin{equation}\begin{aligned}
e^{\kappa x_1}dS^{d-1} =& e^{\kappa\cos\varphi_1}\sin^{d-2}\varphi_1 \sin^{d-3}\varphi_2 \cdots \sin\varphi_{d-2} d\varphi_1 d\varphi_2 \cdots d\varphi_{d-1} \\
=& \left(e^{\kappa\cos\varphi_1}\sin^{d-2}\varphi_1 d\varphi_1\right)\left(\sin^{d-3}\varphi_2 \cdots \sin\varphi_{d-2} d\varphi_2 \cdots d\varphi_{d-1}\right) \\
=& \left(e^{\kappa\cos\varphi_1}\sin^{d-2}\varphi_1 d\varphi_1\right)dS^{d-2} \\
\end{aligned}\end{equation}
这个分解表明,从该vMF分布中采样,等价于先从概率密度正比于$e^{\kappa\cos\varphi_1}\sin^{d-2}\varphi_1$的分布采样一个$\varphi_1$,然后从$d-2$维超球面上均匀采样一个$d-1$维向量$\varepsilon = [\varepsilon_2,\varepsilon_3,\cdots,\varepsilon_d]$,通过如下方式组合成最终采样结果
\begin{equation}x = [\cos\varphi_1, \varepsilon_2\sin\varphi_1, \varepsilon_3\sin\varphi_1, \cdots, \varepsilon_d\sin\varphi_1]\end{equation}
设$w=\cos\phi_1\in[-1,1]$,那么
\begin{equation}\left|e^{\kappa\cos\varphi_1}\sin^{d-2}\varphi_1 d\varphi_1\right| = \left|e^{\kappa w} (1-w^2)^{(d-3)/2}dw\right|\end{equation}
所以我们主要研究从概率密度正比于$e^{\kappa w} (1-w^2)^{(d-3)/2}$的分布中采样。

然而,笔者所不理解的是,大多数涉及到vMF分布的论文,都采用了1994年的论文《Simulation of the von mises fisher distribution》提出的基于beta分布的拒绝采样方案,整个采样流程还是颇为复杂的。但现在都2021年了,对于一维分布的采样,居然还需要拒绝采样这么低效的方案?

事实上,对于任意一维分布$p(w)$,设它的累积概率函数为$\Phi(w)$,那么$w=\Phi^{-1}(\varepsilon),\varepsilon\sim U[0,1]$就是一个最方便通用的采样方案。可能有读者抗议说“累积概率函数不好算呀”、“它的逆函数更不好算呀”,但是在用代码实现采样的时候,我们压根就不需要知道$\Phi(w)$长啥样,只要直接数值计算就行了,参考实现如下:

import numpy as np

def sample_from_pw(size, kappa, dims, epsilon=1e-7):
x = np.arange(-1 + epsilon, 1, epsilon)
y = kappa * x + np.log(1 - x**2) * (dims - 3) / 2
y = np.cumsum(np.exp(y - y.max()))
y = y / y[-1]
return np.interp(np.random.random(size), y, x)

这里的实现中,计算量最大的是变量y的计算,而一旦计算好之后,可以缓存下来,之后只需要执行最后一步来完成采样,其速度是非常快的。这样再怎么看,也比从beta分布中拒绝采样要简单方便吧。顺便说,实现上这里还用到了一个技巧,即先计算对数值,然后减去最大值,最后才算指数,这样可以防止溢出,哪怕$\kappa$成千上万,也可以成功计算。

一般情形 #

现在我们已经实现了从$\mu=[1,0,\cdots,0]$的vMF分布中采样了,我们可以将采样结果分解为
\begin{equation}x = w\times\underbrace{[1,0,\cdots,0]}_{\text{参数向量}\mu} + \sqrt{1-w^2}\times\underbrace{[0,\varepsilon_2,\cdots,\varepsilon_d]}_{\begin{array}{c}\text{与}\mu\text{正交的}d-2\text{维}\\ \text{超球面均匀采样}\end{array}}\end{equation}
同样由于各向同性的原因,对于一般的$\mu$,采样结果依然具有同样的形式:
\begin{equation}\begin{aligned}
&x = w\mu + \sqrt{1-w^2}\nu\\
&w\sim e^{\kappa w} (1-w^2)^{(d-3)/2}\\
&\nu\sim \text{与}\mu\text{正交的}d-2\text{维超球面均匀分布}
\end{aligned}\end{equation}
对于$\nu$的采样,关键之处是与$\mu$正交,这也不难实现,先从标准正态分布中采样一个$d$维向量$z$,然后保留与$\mu$正交的分量并归一化即可:
\begin{equation}\nu = \frac{\varepsilon - \langle \varepsilon,\mu\rangle \mu}{\Vert \varepsilon - \langle \varepsilon,\mu\rangle \mu\Vert},\quad \varepsilon\sim\mathcal{N}(0,1_d)\end{equation}

vMF-VAE #

至此,我们可谓是已经完成了本篇文章最艰难的部分,剩下的构建vMF-VAE可谓是水到渠成了。vMF-VAE选用球面上的均匀分布($\kappa=0$)作为先验分布$q(z)$,并将后验分布选取为vMF分布:
\begin{equation}p(z|x) = C_{d,\kappa} e^{\kappa\langle\mu(x),z\rangle}\end{equation}
简单起见,我们将$\kappa$设为超参数(也可以理解为通过人工而不是梯度下降来更新这个参数),这样一来,$p(z|x)$的唯一参数来源就是$\mu(x)$了。此时我们可以计算KL散度项
\begin{equation}\begin{aligned}
\int p(z|x) \log\frac{p(z|x)}{q(z)} dz =&\, \int C_{d,\kappa} e^{\kappa\langle\mu(x),z\rangle}\left(\kappa\langle\mu(x),z\rangle + \log C_{d,\kappa} - \log C_{d,0}\right)dz\\
=&\,\kappa\left\langle\mu(x),\mathbb{E}_{z\sim p(z|x)}[z]\right\rangle + \log C_{d,\kappa} - \log C_{d,0}
\end{aligned}\end{equation}
前面我们已经讨论过,vMF分布的均值方向跟$\mu(x)$一致,模长则只依赖于$d$和$\kappa$,所以代入上式后我们可以知道KL散度项只依赖于$d$和$\kappa$,当这两个参数被选定之后,那么它就是一个常数(根据KL散度的性质,当$\kappa\neq 0$时,它必然大于0),绝对不会出现KL散度消失现象了。

那么现在就剩下重构项了,我们需要用“重参数(Reparameterization)”来完成采样并保留梯度,在前面我们已经研究了vMF的采样过程,所以也不难实现,综合的流程为:
\begin{equation}\begin{aligned}
&\mathcal{L} = \Vert x - g(z)\Vert^2\\
&z = w\mu(x) + \sqrt{1-w^2}\nu\\
&w\sim e^{\kappa w} (1-w^2)^{(d-3)/2}\\
&\nu=\frac{\varepsilon - \langle \varepsilon,\mu\rangle \mu}{\Vert \varepsilon - \langle \varepsilon,\mu\rangle \mu\Vert}\\
&\varepsilon\sim\mathcal{N}(0,1_d)
\end{aligned}\end{equation}
这里的重构loss以MSE为例,如果是句子重构,那么换用交叉熵就好。其中$\mu(x)$就是编码器,而$g(z)$就是解码器,由于KL散度项为常数,对优化没影响,所以vMF-VAE相比于普通的自编码器,只是多了一项稍微有点复杂的重参数操作(以及人工调整$\kappa$)而已,相比基于高斯分布的标准VAE可谓简化了不少了。

此外,从该流程我们也可以看出,除了“简单起见”之外,不将$\kappa$设为可训练还有一个主要原因,那就是$\kappa$关系到$w$的采样,而在$w$的采样过程中要保留$\kappa$的梯度是比较困难的。

参考实现 #

vMF-VAE的实现难度主要是重参数部分,也就还是从vMF分布中采样,而关键之处就是$w$的采样。前面我们已经给出了$w$的采样的numpy实现,但是在tf中未见类似np.interp的函数,因此不容易转换为纯tf的实现。当然,如果是torch或者tf2这种动态图框架,直接跟numpy的代码混合使用也无妨,但这里还是想构造一种比较通用的方案。

其实也不难,由于$w$只是一个一维变量,每步训练只需要用到batch_size个采样结果,所以我们完全可以事先用numpy函数采样好足够多(几十万)个$w$存好,然后训练的时候直接从这批采样好的结果随机抽就行了,参考实现如下:

def sampling(mu):
    """vMF分布重参数操作
    """
    dims = K.int_shape(mu)[-1]
    # 预先计算一批w
    epsilon = 1e-7
    x = np.arange(-1 + epsilon, 1, epsilon)
    y = kappa * x + np.log(1 - x**2) * (dims - 3) / 2
    y = np.cumsum(np.exp(y - y.max()))
    y = y / y[-1]
    W = K.constant(np.interp(np.random.random(10**6), y, x))
    # 实时采样w
    idxs = K.random_uniform(K.shape(mu[:, :1]), 0, 10**6, dtype='int32')
    w = K.gather(W, idxs)
    # 实时采样z
    eps = K.random_normal(K.shape(mu))
    nu = eps - K.sum(eps * mu, axis=1, keepdims=True) * mu
    nu = K.l2_normalize(nu, axis=-1)
    return w * mu + (1 - w**2)**0.5 * nu

一个基于MNIST的完整例子可见:

https://github.com/bojone/vae/blob/master/vae_vmf_keras.py

至于vMF-VAE用于NLP的例子,我们日后有机会再分享。本文主要还是以理论介绍和简单演示为主~

文章小结 #

本文介绍了基于vMF分布的VAE实现,其主要难度在于vMF分布的采样。总的来说,vMF分布建立在余弦相似度度量之上,在某些方面的性质更符合我们的直观认知,将其用于VAE中,能够使得KL散度项为一个常数,从而防止了KL散度消失现象,并且简化了VAE结构。

转载到请包括本文地址:https://spaces.ac.cn/archives/8404

更详细的转载事宜请参考:《科学空间FAQ》

标签:采样,编码器,kappa,Vert,vMF,varphi,VAE,mu
From: https://www.cnblogs.com/zhangxianrong/p/18290252

相关文章

  • UniVAE:基于Transformer的单模型、多尺度的VAE模型
    大家都知道,Transformer的$\mathscr{O}(n^2)$复杂度是它的“硬伤”之一。不过凡事有弊亦有利,$\mathscr{O}(n^2)$的复杂度也为Transformer带来很大的折腾空间,我们可以灵活地定制不同的attentionmask,来设计出不同用途的Transformer模型来,比如UniLM、K-BERT等。本文介绍笔者构思的一......
  • 变分自编码器(八):估计样本概率密度
    在本系列的前面几篇文章中,我们已经从多个角度来理解了VAE,一般来说,用VAE是为了得到一个生成模型,或者是做更好的编码模型,这都是VAE的常规用途。但除了这些常规应用外,还有一些“小众需求”,比如用来估计$x$的概率密度,这在做压缩的时候通常会用到。本文就从估计概率密度的角度来了解和......
  • libaom 编码器实验 AV1 标准 SVC 分层编码
    SVC编码视频SVC编码,即ScalableVideoCoding(可适性视讯编码或可分级视频编码),是H.264/MPEG-4AVC编码的一种扩展,它提供了更大的编码弹性,并且具有时间可适性(TemporalScalability)、空间可适性(SpatialScalability)及讯杂比(质量)可适性(SNRScalability)三大特性。这种编码方式允......
  • 基于SSM的学校运动会信息管理系统(有报告)。Javaee项目。ssm项目。
    演示视频:基于SSM的学校运动会信息管理系统(有报告)。Javaee项目。ssm项目。项目介绍:采用M(model)V(view)C(controller)三层体系结构,通过Spring+SpringMvc+Mybatis+Jsp+Maven来实现。MySQL数据库作为系统数据储存平台,实现了基于B/S结构的Web系统。报告截图:......
  • (三)变分自动编码器
    过去虽然没有细看,但印象里一直觉得变分自编码器(VariationalAuto-Encoder,VAE)是个好东西。于是趁着最近看概率图模型的三分钟热度,我决定也争取把VAE搞懂。于是乎照样翻了网上很多资料,无一例外发现都很含糊,主要的感觉是公式写了一大通,还是迷迷糊糊的,最后好不容易觉得看懂了,再去看看......
  • (一)变分推断与变分自编码器
     本文主要介绍变分自编码器(VariationalAuto-Encoder,VAE)及其推导过程,但变分自编码器涉及一些概率统计的基础知识,因此为了更好地理解变分自编码器,首先介绍变分推断(VariationalInference)与期望最大化(Expectation-Maximization,EM)算法,进而介绍变分自编码器,并给出另一种理......
  • Arduino 驱动360度旋转传感器(如旋转编码器)
    以下是使用ArduinoUnoR3驱动一个360度旋转传感器(如旋转编码器)的详细说明、接线图和代码示例,其中传感器引脚为CLK、DT、SW、+、GND。所需材料ArduinoUnoR3360度旋转传感器(旋转编码器)面包板和连接线接线步骤连接旋转传感器:将旋转编码器的CLK引脚连接到ArduinoUno的......
  • SD中的VAE,你不能不懂
    什么是VAE?VAE,即变分自编码器(VariationalAutoencoder),是一种生成模型,它通过学习输入数据的潜在表示来重构输入数据。在StableDiffusion1.4或1.5模型中,通过VAE对模型进行部分更新,以提升模型渲染眼睛的能力。通过这种更新,模型在生成图像时能够更准确地捕捉和再现眼睛的细节,从......
  • ros2 - slam - 直流电机-编码器脉冲测量与校准
    这一节我们编写代码来尝试下是否能够读取到电机上编码器的脉冲数,并通过实验测试出小车的输出轴转速和编码器脉冲的比值。一、新建工程并导入开源库新建example25_encoder添加依赖[env:featheresp32];这是一个环境配置标签,指定了代码将运行的硬件平台和框架platform=esp......
  • ros2 - slam - 使用编码器测量轮子最大速度
    新建example26_max_speed_measurement 添加依赖[env:featheresp32];这是一个环境配置标签,指定了代码将运行的硬件平台和框架platform=espressif32;指定了使用的平台为Espressif32board=featheresp32;指定使用的硬件板为FeatherESP32framework=arduino;......