首页 > 其他分享 >ComfyUI预处理器ControlNet简单介绍与使用(附件工作流)

ComfyUI预处理器ControlNet简单介绍与使用(附件工作流)

时间:2024-07-07 14:30:16浏览次数:22  
标签:ControlNet name links ComfyUI IMAGE label shape 处理器 type

简介

ControlNet 是一个很强的插件,提供了很多种图片的控制方式,有的可以控制画面的结构,有的可以控制人物的姿势,还有的可以控制图片的画风,这对于提高AI绘画的质量特别有用。接下来就演示几种热门常用的控制方式

1.OpenPose(姿态控制预处理器)

姿态控制预处理器可以根据提供的图像将人物的骨骼脸部手部的姿态展示处理,通过这个预处理器可以很好的控制出图人物的姿态

2.Depth(深度预处理器)

深度预处理器可以将图片的空间的远近以黑白的形式展示出来,白近黑远,当我们上传一张图片通过OpenPose识别到手的位置,但骨骼图并不能描述手在身前还是身后的时候,那个深度预处理器就可以提现出作用了,当然还可以运用在一些建筑、室内等情况

3.LineArt(线条预处理器)

线条预处理器可以将图片用线条的形式描绘出来,可以很好的控制图片的细节

4.HED Soft-Edge(模糊线条预处理器)

模糊线条预处理器与线条预处理器类型也是用线条描绘图片,但仅大概描绘轮廓,更利于出图的随机性

接下来演示一下这四个预处理器效果,不同的预处理器之间是可以搭配使用的,根据不同的需求选择不用的预处理器来解决问题

请添加图片描述

附件工作流

复制Json内容到ComfyUI中即可

{
  "last_node_id": 46,
  "last_link_id": 65,
  "nodes": [
    {
      "id": 31,
      "type": "PreviewImage",
      "pos": [
        1110,
        -1000
      ],
      "size": {
        "0": 210,
        "1": 310
      },
      "flags": {},
      "order": 15,
      "mode": 0,
      "inputs": [
        {
          "name": "images",
          "type": "IMAGE",
          "link": 31,
          "label": "图像"
        }
      ],
      "properties": {
        "Node name for S&R": "PreviewImage"
      }
    },
    {
      "id": 29,
      "type": "PreviewImage",
      "pos": [
        760,
        -1000
      ],
      "size": {
        "0": 210,
        "1": 310
      },
      "flags": {},
      "order": 14,
      "mode": 0,
      "inputs": [
        {
          "name": "images",
          "type": "IMAGE",
          "link": 30,
          "label": "图像",
          "slot_index": 0
        }
      ],
      "properties": {
        "Node name for S&R": "PreviewImage"
      }
    },
    {
      "id": 34,
      "type": "HEDPreprocessor",
      "pos": [
        1050,
        -500
      ],
      "size": {
        "0": 315,
        "1": 82
      },
      "flags": {},
      "order": 10,
      "mode": 0,
      "inputs": [
        {
          "name": "image",
          "type": "IMAGE",
          "link": 34,
          "label": "图像"
        }
      ],
      "outputs": [
        {
          "name": "IMAGE",
          "type": "IMAGE",
          "links": [
            31,
            54
          ],
          "shape": 3,
          "label": "图像",
          "slot_index": 0
        }
      ],
      "properties": {
        "Node name for S&R": "HEDPreprocessor"
      },
      "widgets_values": [
        "enable",
        512
      ]
    },
    {
      "id": 32,
      "type": "ControlNetLoader",
      "pos": [
        1060,
        -640
      ],
      "size": {
        "0": 315,
        "1": 58
      },
      "flags": {},
      "order": 0,
      "mode": 0,
      "outputs": [
        {
          "name": "CONTROL_NET",
          "type": "CONTROL_NET",
          "links": [
            53
          ],
          "shape": 3,
          "label": "ControlNet",
          "slot_index": 0
        }
      ],
      "properties": {
        "Node name for S&R": "ControlNetLoader"
      },
      "widgets_values": [
        "control_v11p_sd15_softedge.pth"
      ]
    },
    {
      "id": 25,
      "type": "PreviewImage",
      "pos": [
        420,
        -1000
      ],
      "size": {
        "0": 210,
        "1": 310
      },
      "flags": {},
      "order": 13,
      "mode": 0,
      "inputs": [
        {
          "name": "images",
          "type": "IMAGE",
          "link": 29,
          "label": "图像"
        }
      ],
      "properties": {
        "Node name for S&R": "PreviewImage"
      }
    },
    {
      "id": 12,
      "type": "ControlNetLoader",
      "pos": [
        30,
        -640
      ],
      "size": {
        "0": 320,
        "1": 60
      },
      "flags": {},
      "order": 1,
      "mode": 0,
      "outputs": [
        {
          "name": "CONTROL_NET",
          "type": "CONTROL_NET",
          "links": [
            47
          ],
          "slot_index": 0,
          "label": "ControlNet"
        }
      ],
      "properties": {
        "Node name for S&R": "ControlNetLoader"
      },
      "widgets_values": [
        "control_v11p_sd15_openpose.pth"
      ]
    },
    {
      "id": 16,
      "type": "OpenposePreprocessor",
      "pos": [
        30,
        -540
      ],
      "size": {
        "0": 315,
        "1": 150
      },
      "flags": {},
      "order": 7,
      "mode": 0,
      "inputs": [
        {
          "name": "image",
          "type": "IMAGE",
          "link": 22,
          "label": "图像"
        }
      ],
      "outputs": [
        {
          "name": "IMAGE",
          "type": "IMAGE",
          "links": [
            24,
            48
          ],
          "shape": 3,
          "label": "图像",
          "slot_index": 0
        },
        {
          "name": "POSE_KEYPOINT",
          "type": "POSE_KEYPOINT",
          "links": null,
          "shape": 3,
          "label": "姿态关键点"
        }
      ],
      "properties": {
        "Node name for S&R": "OpenposePreprocessor"
      },
      "widgets_values": [
        "enable",
        "enable",
        "enable",
        512
      ]
    },
    {
      "id": 23,
      "type": "ControlNetLoader",
      "pos": [
        380,
        -640
      ],
      "size": {
        "0": 315,
        "1": 58
      },
      "flags": {},
      "order": 2,
      "mode": 0,
      "outputs": [
        {
          "name": "CONTROL_NET",
          "type": "CONTROL_NET",
          "links": [
            49
          ],
          "shape": 3,
          "label": "ControlNet",
          "slot_index": 0
        }
      ],
      "properties": {
        "Node name for S&R": "ControlNetLoader"
      },
      "widgets_values": [
        "control_v11f1p_sd15_depth.pth"
      ]
    },
    {
      "id": 21,
      "type": "Zoe_DepthAnythingPreprocessor",
      "pos": [
        370,
        -500
      ],
      "size": {
        "0": 315,
        "1": 82
      },
      "flags": {},
      "order": 8,
      "mode": 0,
      "inputs": [
        {
          "name": "image",
          "type": "IMAGE",
          "link": 32,
          "label": "图像",
          "slot_index": 0
        }
      ],
      "outputs": [
        {
          "name": "IMAGE",
          "type": "IMAGE",
          "links": [
            29,
            50
          ],
          "shape": 3,
          "label": "图像",
          "slot_index": 0
        }
      ],
      "properties": {
        "Node name for S&R": "Zoe_DepthAnythingPreprocessor"
      },
      "widgets_values": [
        "indoor",
        512
      ]
    },
    {
      "id": 30,
      "type": "ControlNetLoader",
      "pos": [
        710,
        -640
      ],
      "size": {
        "0": 315,
        "1": 58
      },
      "flags": {},
      "order": 3,
      "mode": 0,
      "outputs": [
        {
          "name": "CONTROL_NET",
          "type": "CONTROL_NET",
          "links": [
            51
          ],
          "shape": 3,
          "label": "ControlNet",
          "slot_index": 0
        }
      ],
      "properties": {
        "Node name for S&R": "ControlNetLoader"
      },
      "widgets_values": [
        "control_v11p_sd15_lineart.pth"
      ]
    },
    {
      "id": 33,
      "type": "LineArtPreprocessor",
      "pos": [
        710,
        -500
      ],
      "size": {
        "0": 315,
        "1": 82
      },
      "flags": {},
      "order": 9,
      "mode": 0,
      "inputs": [
        {
          "name": "image",
          "type": "IMAGE",
          "link": 33,
          "label": "图像"
        }
      ],
      "outputs": [
        {
          "name": "IMAGE",
          "type": "IMAGE",
          "links": [
            30,
            52
          ],
          "shape": 3,
          "label": "图像",
          "slot_index": 0
        }
      ],
      "properties": {
        "Node name for S&R": "LineArtPreprocessor"
      },
      "widgets_values": [
        "disable",
        512
      ]
    },
    {
      "id": 35,
      "type": "Efficient Loader",
      "pos": [
        2130,
        690
      ],
      "size": {
        "0": 400,
        "1": 462
      },
      "flags": {},
      "order": 6,
      "mode": 0,
      "inputs": [
        {
          "name": "lora_stack",
          "type": "LORA_STACK",
          "link": null,
          "label": "LoRA堆"
        },
        {
          "name": "cnet_stack",
          "type": "CONTROL_NET_STACK",
          "link": 55,
          "label": "ControlNet堆",
          "slot_index": 1
        }
      ],
      "outputs": [
        {
          "name": "MODEL",
          "type": "MODEL",
          "links": null,
          "shape": 3,
          "label": "模型"
        },
        {
          "name": "CONDITIONING+",
          "type": "CONDITIONING",
          "links": null,
          "shape": 3,
          "label": "正面条件"
        },
        {
          "name": "CONDITIONING-",
          "type": "CONDITIONING",
          "links": null,
          "shape": 3,
          "label": "负面条件"
        },
        {
          "name": "LATENT",
          "type": "LATENT",
          "links": null,
          "shape": 3,
          "label": "Latent"
        },
        {
          "name": "VAE",
          "type": "VAE",
          "links": null,
          "shape": 3,
          "label": "VAE"
        },
        {
          "name": "CLIP",
          "type": "CLIP",
          "links": null,
          "shape": 3,
          "label": "CLIP"
        },
        {
          "name": "DEPENDENCIES",
          "type": "DEPENDENCIES",
          "links": null,
          "shape": 3,
          "label": "依赖"
        }
      ],
      "properties": {
        "Node name for S&R": "Efficient Loader"
      },
      "widgets_values": [
        "AWPainting_v1.3.safetensors",
        "Baked VAE",
        -1,
        "None",
        1,
        1,
        "CLIP_POSITIVE",
        "CLIP_NEGATIVE",
        "none",
        "comfy",
        512,
        512,
        1
      ],
      "color": "#2a363b",
      "bgcolor": "#3f5159",
      "shape": 1
    },
    {
      "id": 41,
      "type": "Control Net Stacker",
      "pos": [
        1720,
        650
      ],
      "size": {
        "0": 315,
        "1": 146
      },
      "flags": {},
      "order": 4,
      "mode": 0,
      "inputs": [
        {
          "name": "control_net",
          "type": "CONTROL_NET",
          "link": null,
          "label": "ControlNet"
        },
        {
          "name": "image",
          "type": "IMAGE",
          "link": null,
          "label": "图像"
        },
        {
          "name": "cnet_stack",
          "type": "CONTROL_NET_STACK",
          "link": null,
          "label": "ControlNet堆"
        }
      ],
      "outputs": [
        {
          "name": "CNET_STACK",
          "type": "CONTROL_NET_STACK",
          "links": [
            55
          ],
          "shape": 3,
          "label": "ControlNet堆"
        }
      ],
      "properties": {
        "Node name for S&R": "Control Net Stacker"
      },
      "widgets_values": [
        1,
        0,
        1
      ],
      "color": "#223322",
      "bgcolor": "#335533",
      "shape": 1
    },
    {
      "id": 17,
      "type": "PreviewImage",
      "pos": [
        70,
        -1000
      ],
      "size": {
        "0": 210,
        "1": 310
      },
      "flags": {},
      "order": 11,
      "mode": 0,
      "inputs": [
        {
          "name": "images",
          "type": "IMAGE",
          "link": 24,
          "label": "图像"
        }
      ],
      "properties": {
        "Node name for S&R": "PreviewImage"
      }
    },
    {
      "id": 37,
      "type": "Control Net Stacker",
      "pos": [
        30,
        -340
      ],
      "size": {
        "0": 315,
        "1": 146
      },
      "flags": {},
      "order": 12,
      "mode": 0,
      "inputs": [
        {
          "name": "control_net",
          "type": "CONTROL_NET",
          "link": 47,
          "label": "ControlNet"
        },
        {
          "name": "image",
          "type": "IMAGE",
          "link": 48,
          "label": "图像"
        },
        {
          "name": "cnet_stack",
          "type": "CONTROL_NET_STACK",
          "link": null,
          "label": "ControlNet堆"
        }
      ],
      "outputs": [
        {
          "name": "CNET_STACK",
          "type": "CONTROL_NET_STACK",
          "links": [
            62
          ],
          "shape": 3,
          "label": "ControlNet堆",
          "slot_index": 0
        }
      ],
      "properties": {
        "Node name for S&R": "Control Net Stacker"
      },
      "widgets_values": [
        1,
        0,
        1
      ],
      "color": "#223322",
      "bgcolor": "#335533",
      "shape": 1
    },
    {
      "id": 38,
      "type": "Control Net Stacker",
      "pos": [
        370,
        -340
      ],
      "size": {
        "0": 315,
        "1": 146
      },
      "flags": {},
      "order": 16,
      "mode": 0,
      "inputs": [
        {
          "name": "control_net",
          "type": "CONTROL_NET",
          "link": 49,
          "label": "ControlNet"
        },
        {
          "name": "image",
          "type": "IMAGE",
          "link": 50,
          "label": "图像"
        },
        {
          "name": "cnet_stack",
          "type": "CONTROL_NET_STACK",
          "link": 62,
          "label": "ControlNet堆"
        }
      ],
      "outputs": [
        {
          "name": "CNET_STACK",
          "type": "CONTROL_NET_STACK",
          "links": [
            63
          ],
          "shape": 3,
          "label": "ControlNet堆",
          "slot_index": 0
        }
      ],
      "properties": {
        "Node name for S&R": "Control Net Stacker"
      },
      "widgets_values": [
        0.2,
        0,
        1
      ],
      "color": "#223322",
      "bgcolor": "#335533",
      "shape": 1
    },
    {
      "id": 39,
      "type": "Control Net Stacker",
      "pos": [
        710,
        -340
      ],
      "size": {
        "0": 315,
        "1": 146
      },
      "flags": {},
      "order": 17,
      "mode": 0,
      "inputs": [
        {
          "name": "control_net",
          "type": "CONTROL_NET",
          "link": 51,
          "label": "ControlNet"
        },
        {
          "name": "image",
          "type": "IMAGE",
          "link": 52,
          "label": "图像"
        },
        {
          "name": "cnet_stack",
          "type": "CONTROL_NET_STACK",
          "link": 63,
          "label": "ControlNet堆"
        }
      ],
      "outputs": [
        {
          "name": "CNET_STACK",
          "type": "CONTROL_NET_STACK",
          "links": [
            64
          ],
          "shape": 3,
          "label": "ControlNet堆",
          "slot_index": 0
        }
      ],
      "properties": {
        "Node name for S&R": "Control Net Stacker"
      },
      "widgets_values": [
        0.5,
        0,
        1
      ],
      "color": "#223322",
      "bgcolor": "#335533",
      "shape": 1
    },
    {
      "id": 40,
      "type": "Control Net Stacker",
      "pos": [
        1050,
        -340
      ],
      "size": {
        "0": 315,
        "1": 146
      },
      "flags": {},
      "order": 18,
      "mode": 0,
      "inputs": [
        {
          "name": "control_net",
          "type": "CONTROL_NET",
          "link": 53,
          "label": "ControlNet",
          "slot_index": 0
        },
        {
          "name": "image",
          "type": "IMAGE",
          "link": 54,
          "label": "图像",
          "slot_index": 1
        },
        {
          "name": "cnet_stack",
          "type": "CONTROL_NET_STACK",
          "link": 64,
          "label": "ControlNet堆"
        }
      ],
      "outputs": [
        {
          "name": "CNET_STACK",
          "type": "CONTROL_NET_STACK",
          "links": [
            65
          ],
          "shape": 3,
          "label": "ControlNet堆",
          "slot_index": 0
        }
      ],
      "properties": {
        "Node name for S&R": "Control Net Stacker"
      },
      "widgets_values": [
        0.5,
        0,
        1
      ],
      "color": "#223322",
      "bgcolor": "#335533",
      "shape": 1
    },
    {
      "id": 44,
      "type": "SaveImage",
      "pos": [
        2220,
        -630
      ],
      "size": {
        "0": 320,
        "1": 270
      },
      "flags": {},
      "order": 21,
      "mode": 0,
      "inputs": [
        {
          "name": "images",
          "type": "IMAGE",
          "link": 61,
          "label": "图像"
        }
      ],
      "properties": {},
      "widgets_values": [
        "ComfyUI"
      ]
    },
    {
      "id": 43,
      "type": "KSampler (Efficient)",
      "pos": [
        1860,
        -750
      ],
      "size": {
        "0": 330,
        "1": 560
      },
      "flags": {},
      "order": 20,
      "mode": 0,
      "inputs": [
        {
          "name": "model",
          "type": "MODEL",
          "link": 56,
          "label": "模型"
        },
        {
          "name": "positive",
          "type": "CONDITIONING",
          "link": 57,
          "label": "正面条件"
        },
        {
          "name": "negative",
          "type": "CONDITIONING",
          "link": 58,
          "label": "负面条件"
        },
        {
          "name": "latent_image",
          "type": "LATENT",
          "link": 59,
          "label": "Latent"
        },
        {
          "name": "optional_vae",
          "type": "VAE",
          "link": 60,
          "label": "VAE(可选)"
        },
        {
          "name": "script",
          "type": "SCRIPT",
          "link": null,
          "label": "脚本"
        }
      ],
      "outputs": [
        {
          "name": "MODEL",
          "type": "MODEL",
          "links": null,
          "shape": 3,
          "label": "模型"
        },
        {
          "name": "CONDITIONING+",
          "type": "CONDITIONING",
          "links": null,
          "shape": 3,
          "label": "正面条件"
        },
        {
          "name": "CONDITIONING-",
          "type": "CONDITIONING",
          "links": null,
          "shape": 3,
          "label": "负面条件"
        },
        {
          "name": "LATENT",
          "type": "LATENT",
          "links": null,
          "shape": 3,
          "label": "Latent"
        },
        {
          "name": "VAE",
          "type": "VAE",
          "links": null,
          "shape": 3,
          "label": "VAE"
        },
        {
          "name": "IMAGE",
          "type": "IMAGE",
          "links": [
            61
          ],
          "shape": 3,
          "label": "图像",
          "slot_index": 5
        }
      ],
      "properties": {
        "Node name for S&R": "KSampler (Efficient)"
      },
      "widgets_values": [
        248390093388796,
        null,
        20,
        10,
        "dpmpp_2m",
        "karras",
        1,
        "auto",
        "true"
      ],
      "color": "#222233",
      "bgcolor": "#333355",
      "shape": 1
    },
    {
      "id": 42,
      "type": "Efficient Loader",
      "pos": [
        1420,
        -650
      ],
      "size": {
        "0": 400,
        "1": 462.0000305175781
      },
      "flags": {},
      "order": 19,
      "mode": 0,
      "inputs": [
        {
          "name": "lora_stack",
          "type": "LORA_STACK",
          "link": null,
          "label": "LoRA堆"
        },
        {
          "name": "cnet_stack",
          "type": "CONTROL_NET_STACK",
          "link": 65,
          "label": "ControlNet堆"
        }
      ],
      "outputs": [
        {
          "name": "MODEL",
          "type": "MODEL",
          "links": [
            56
          ],
          "shape": 3,
          "label": "模型",
          "slot_index": 0
        },
        {
          "name": "CONDITIONING+",
          "type": "CONDITIONING",
          "links": [
            57
          ],
          "shape": 3,
          "label": "正面条件",
          "slot_index": 1
        },
        {
          "name": "CONDITIONING-",
          "type": "CONDITIONING",
          "links": [
            58
          ],
          "shape": 3,
          "label": "负面条件",
          "slot_index": 2
        },
        {
          "name": "LATENT",
          "type": "LATENT",
          "links": [
            59
          ],
          "shape": 3,
          "label": "Latent",
          "slot_index": 3
        },
        {
          "name": "VAE",
          "type": "VAE",
          "links": [
            60
          ],
          "shape": 3,
          "label": "VAE",
          "slot_index": 4
        },
        {
          "name": "CLIP",
          "type": "CLIP",
          "links": null,
          "shape": 3,
          "label": "CLIP"
        },
        {
          "name": "DEPENDENCIES",
          "type": "DEPENDENCIES",
          "links": null,
          "shape": 3,
          "label": "依赖"
        }
      ],
      "properties": {
        "Node name for S&R": "Efficient Loader"
      },
      "widgets_values": [
        "AWPainting_v1.3.safetensors",
        "Baked VAE",
        -2,
        "None",
        1,
        1,
        "masterpiece, best quality, highres, 1girl, bare shoulders, brown hair, long hair, (orange dress:1.2), looking at viewer, forest, maple leaves,outdoors, wild, plants, cinematic lights, lightrays,depth of field, blurry_background, blurry_foreground, shiny luminious,",
        "(hands), text, error, cropped, (worst quality:1.2), (low quality:1.2), normal quality, (jpeg artifacts:1.3), signature, watermark, username, blurry, artist name, monochrome, sketch, censorship, censor, (copyright:1.2), extra legs, (forehead mark) (depth of field) (emotionless) (penis), embedding:EasyNegative, embedding:badhandv4, ",
        "none",
        "comfy++",
        768,
        1152,
        1
      ],
      "color": "#443322",
      "bgcolor": "#665533",
      "shape": 1
    },
    {
      "id": 11,
      "type": "LoadImage",
      "pos": [
        -250,
        -800
      ],
      "size": [
        220,
        314
      ],
      "flags": {},
      "order": 5,
      "mode": 0,
      "outputs": [
        {
          "name": "IMAGE",
          "type": "IMAGE",
          "links": [
            22,
            32,
            33,
            34
          ],
          "slot_index": 0,
          "label": "图像"
        },
        {
          "name": "MASK",
          "type": "MASK",
          "links": null,
          "label": "遮罩"
        }
      ],
      "properties": {
        "Node name for S&R": "LoadImage"
      },
      "widgets_values": [
        "aimake_Example_1713001562048_49 (1) (3).jpg",
        "image"
      ]
    }
  ],
  "links": [
    [
      22,
      11,
      0,
      16,
      0,
      "IMAGE"
    ],
    [
      24,
      16,
      0,
      17,
      0,
      "IMAGE"
    ],
    [
      29,
      21,
      0,
      25,
      0,
      "IMAGE"
    ],
    [
      30,
      33,
      0,
      29,
      0,
      "IMAGE"
    ],
    [
      31,
      34,
      0,
      31,
      0,
      "IMAGE"
    ],
    [
      32,
      11,
      0,
      21,
      0,
      "IMAGE"
    ],
    [
      33,
      11,
      0,
      33,
      0,
      "IMAGE"
    ],
    [
      34,
      11,
      0,
      34,
      0,
      "IMAGE"
    ],
    [
      47,
      12,
      0,
      37,
      0,
      "CONTROL_NET"
    ],
    [
      48,
      16,
      0,
      37,
      1,
      "IMAGE"
    ],
    [
      49,
      23,
      0,
      38,
      0,
      "CONTROL_NET"
    ],
    [
      50,
      21,
      0,
      38,
      1,
      "IMAGE"
    ],
    [
      51,
      30,
      0,
      39,
      0,
      "CONTROL_NET"
    ],
    [
      52,
      33,
      0,
      39,
      1,
      "IMAGE"
    ],
    [
      53,
      32,
      0,
      40,
      0,
      "CONTROL_NET"
    ],
    [
      54,
      34,
      0,
      40,
      1,
      "IMAGE"
    ],
    [
      55,
      41,
      0,
      35,
      1,
      "CONTROL_NET_STACK"
    ],
    [
      56,
      42,
      0,
      43,
      0,
      "MODEL"
    ],
    [
      57,
      42,
      1,
      43,
      1,
      "CONDITIONING"
    ],
    [
      58,
      42,
      2,
      43,
      2,
      "CONDITIONING"
    ],
    [
      59,
      42,
      3,
      43,
      3,
      "LATENT"
    ],
    [
      60,
      42,
      4,
      43,
      4,
      "VAE"
    ],
    [
      61,
      43,
      5,
      44,
      0,
      "IMAGE"
    ],
    [
      62,
      37,
      0,
      38,
      2,
      "CONTROL_NET_STACK"
    ],
    [
      63,
      38,
      0,
      39,
      2,
      "CONTROL_NET_STACK"
    ],
    [
      64,
      39,
      0,
      40,
      2,
      "CONTROL_NET_STACK"
    ],
    [
      65,
      40,
      0,
      42,
      1,
      "CONTROL_NET_STACK"
    ]
  ],
  "groups": [],
  "config": {},
  "extra": {
    "0246.VERSION": [
      0,
      0,
      4
    ]
  },
  "version": 0.4
}

测试图片
请添加图片描述

标签:ControlNet,name,links,ComfyUI,IMAGE,label,shape,处理器,type
From: https://blog.csdn.net/weixin_38468167/article/details/140245417

相关文章

  • comfyui的官网内容摘要
    ComfyUI:功能强大且模块化的StableDiffusionGUI和后端ComfyUI是一款功能强大且模块化的StableDiffusion图形界面和后端,它使用基于图形/节点/流程图的界面来设计和执行高级StableDiffusion流程。以下是ComfyUI的主要特点和信息:主要功能:图形/节点/流程图界面:无需......
  • ComfyUI进阶篇:ComfyUI核心节点(二)
    ComfyUI核心节点(二)前言:学习ComfyUI是一场持久战。当你掌握了ComfyUI的安装和运行之后,会发现大量五花八门的节点。面对各种各样的工作流和复杂的节点种类,可能会让人感到不知所措。在这篇文章中,我们将用通俗易懂的语言对ComfyUI的核心节点进行系统梳理,并详细解释每个参数。希望......
  • ComfyUI进阶篇:ComfyUI核心节点(一)
    ComfyUI进阶篇:ComfyUI核心节点(一)前言:学习ComfyUI是一场持久战。当你掌握了ComfyUI的安装和运行之后,会发现大量五花八门的节点。面对各种各样的工作流和复杂的节点种类,可能会让人感到不知所措。在这篇文章中,我们将用通俗易懂的语言对ComfyUI的核心节点进行系统梳理,并详细解释每个......
  • 认识8086处理器
    8086处理器是英特尔(Intel)在1978年推出的一款16位微处理器,它是x86架构以及计算机科技发展史的重要里程碑。如今我们学习x86汇编绕不开8086处理器。通用寄存器8086处理器有八个十六位通用寄存器:AXBXCXDXSIDIBPSP。AXBXCXDX四个寄存器又可分为八个八位处理器。以......
  • ComfyUI基础篇:为什么要学 ComfyUI?
    前言:在AI生成图像领域,有许多产品,例如Midjourney和StabilityAI等。为什么要学习ComfyUI呢?我斗胆带大家一起分析一下。目录1.MidjourneyVSStableDiffusion2.SDWebUIVSComfyUI3.总结MidjourneyVSStableDiffusion在回答这个问题之前,我觉得......
  • comfyui使用模型两种方式
    1、huggingface1.1原始用法是模型clone到本地,直接运行下面记录了git克隆大文件报错的问题https://github.com/git-lfs/git-lfs/issues/5749打开gitbash,直接执行GIT_CLONE_PROTECTION_ACTIVE=false就行这种方式应该也可以GIT_CLONE_PROTECTION_ACTIVE=false......
  • VPX6U板卡:基于龙芯LS2K1000处理器的全国产板卡
       龙芯2K1000的6UVPX板卡是专为高性能计算和嵌入式应用设计的,这种类型的板卡采用了龙芯2K1000双核处理器,其主频范围在800MHz至1GHz之间。它支持高速串行总线,如PCIExpress(PCIe)和10GigabitEthernet,以及高密度I/O连接。以下是基于龙芯2K1000的6UVPX板卡的具体信息:......
  • ComfyUI流程图、文生图、图生图步骤教学!
    前言leetcode,209.长度最小的子数组给定一个含有n个正整数的数组和一个正整数target。找出该数组中满足其总和大于等于target的长度最小的子数组[numsl,numsl+1,…,numsr-1,numsr],并返回其长度。如果不存在符合条件的子数组,返回0。publicintminSubAr......
  • 浅谈前置处理器之取样器超时
    浅谈前置处理器之取样器超时取样器取样器超时设置决定了JMeter等待取样器完成并接收响应的最大时间长度。如果在这个时间内未收到响应,取样器将标记该请求为超时错误。参数说明●在取样器超时的配置界面找到“Sampletimeout(inmilliseconds)进行设置。●超时值以毫秒......