ShuffleNet网络介绍
ShuffleNetV1是由旷视科技提出的一种高效计算的卷积神经网络(CNN)模型,主要用于移动设备。与MobileNet和SqueezeNet类似,ShuffleNetV1的设计目标是利用有限的计算资源达到最佳模型精度。其核心设计是引入了Pointwise Group Convolution和Channel Shuffle,这两种操作在保持精度的同时大大降低了模型的计算量。
模型架构
ShuffleNet最显著的特点是在ResNet的基础上,通过对通道进行重排解决了Group Convolution带来的弊端。具体来说,ShuffleNet对ResNet的Bottleneck单元进行了改进,在较小的计算量情况下实现了较高的准确率。
Pointwise Group Convolution
分组卷积(Group Convolution)将卷积核分组,减少了参数量和计算量。每个卷积核只处理输入特征图的一部分通道,虽然参数量减少了,但这种方法也限制了不同组别之间的信息交流。
Channel Shuffle
分组卷积的一个主要问题是不同组别的通道无法交流。为了解决这个问题,ShuffleNet引入了Channel Shuffle机制,通过重排通道,确保不同组别的通道信息能够相互交流。
模型构建
ShuffleNet的网络结构如下所示,以输入图像224×224,组数3(g = 3)为例:
import mindspore as ms
from mindspore import nn, ops, Tensor
class GroupConv(nn.Cell):
def __init__(self, in_channels, out_channels, kernel_size, stride, pad_mode="pad", pad=0, groups=1, has_bias=False):
super(GroupConv, self).__init__()
self.groups = groups
self.convs = nn.CellList()
for _ in range(groups):
self.convs.append(nn.Conv2d(in_channels // groups, out_channels // groups, kernel_size=kernel_size, stride=stride, has_bias=has_bias, padding=pad, pad_mode=pad_mode, group=1, weight_init='xavier_uniform'))
def construct(self, x):
features = ops.split(x, split_size_or_sections=int(len(x[0]) // self.groups), axis=1)
outputs = ()
for i in range(self.groups):
outputs = outputs + (self.convs[i](features[i].astype("float32")),)
out = ops.cat(outputs, axis=1)
return out
class ShuffleV1Block(nn.Cell):
def __init__(self, inp, oup, group, first_group, mid_channels, ksize, stride):
super(ShuffleV1Block, self).__init__()
self.stride = stride
pad = ksize // 2
self.group = group
if stride == 2:
outputs = oup - inp
else:
outputs = oup
self.relu = nn.ReLU()
branch_main_1 = [
GroupConv(in_channels=inp, out_channels=mid_channels, kernel_size=1, stride=1, pad_mode="pad", pad=0, groups=1 if first_group else group),
nn.BatchNorm2d(mid_channels),
nn.ReLU(),
]
branch_main_2 = [
nn.Conv2d(mid_channels, mid_channels, kernel_size=ksize, stride=stride, pad_mode='pad', padding=pad, group=mid_channels, weight_init='xavier_uniform', has_bias=False),
nn.BatchNorm2d(mid_channels),
GroupConv(in_channels=mid_channels, out_channels=outputs, kernel_size=1, stride=1, pad_mode="pad", pad=0, groups=group),
nn.BatchNorm2d(outputs),
]
self.branch_main_1 = nn.SequentialCell(branch_main_1)
self.branch_main_2 = nn.SequentialCell(branch_main_2)
if self.stride == 2:
self.branch_proj = nn.AvgPool2d(kernel_size=3, stride=2, pad_mode='same')
def construct(self, old_x):
left = old_x
right = old_x
out = old_x
right = self.branch_main_1(right)
if self.group > 1:
right = self.channel_shuffle(right)
right = self.branch_main_2(right)
if self.stride == 1:
out = self.relu(left + right)
elif self.stride == 2:
left = self.branch_proj(left)
out = ops.cat((left, right), 1)
out = self.relu(out)
return out
def channel_shuffle(self, x):
batchsize, num_channels, height, width = ops.shape(x)
group_channels = num_channels // self.group
x = ops.reshape(x, (batchsize, group_channels, self.group, height, width))
x = ops.transpose(x, (0, 2, 1, 3, 4))
x = ops.reshape(x, (batchsize, num_channels, height, width))
return x
class ShuffleNetV1(nn.Cell):
def __init__(self, n_class=1000, model_size='2.0x', group=3):
super(ShuffleNetV1, self).__init__()
self.stage_repeats = [4, 8, 4]
self.model_size = model_size
if group == 3:
if model_size == '0.5x':
self.stage_out_channels = [-1, 12, 120, 240, 480]
elif model_size == '1.0x':
self.stage_out_channels = [-1, 24, 240, 480, 960]
elif model_size == '1.5x':
self.stage_out_channels = [-1, 24, 360, 720, 1440]
elif model_size == '2.0x':
self.stage_out_channels = [-1, 48, 480, 960, 1920]
else:
raise NotImplementedError
elif group == 8:
if model_size == '0.5x':
self.stage_out_channels = [-1, 16, 192, 384, 768]
elif model_size == '1.0x':
self.stage_out_channels = [-1, 24, 384, 768, 1536]
elif model_size == '1.5x':
self.stage_out_channels = [-1, 24, 576, 1152, 2304]
elif model_size == '2.0x':
self.stage_out_channels = [-1, 48, 768, 1536, 3072]
else:
raise NotImplementedError
input_channel = self.stage_out_channels[1]
self.first_conv = nn.SequentialCell(
nn.Conv2d(3, input_channel, 3, 2, 'pad', 1, weight_init='xavier_uniform', has_bias=False),
nn.BatchNorm2d(input_channel),
nn.ReLU(),
)
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, pad_mode='same')
features = []
for idxstage in range(len(self.stage_repeats)):
numrepeat = self.stage_repeats[idxstage]
output_channel = self.stage_out_channels[idxstage + 2]
for i in range(numrepeat):
stride = 2 if i == 0 else 1
first_group = idxstage == 0 and i == 0
features.append(ShuffleV1Block(input_channel, output_channel, group=group, first_group=first_group, mid_channels=output_channel // 4, ksize=3, stride=stride))
input_channel = output_channel
self.features = nn.SequentialCell(features)
self.globalpool = nn.AvgPool2d(7)
self.classifier = nn.Dense(self.stage_out_channels[-1], n_class)
def construct(self, x):
x = self.first_conv(x)
x = self.maxpool(x)
x = self.features(x)
x = self.globalpool(x)
x = ops.reshape(x, (-1, self.stage_out_channels[-1]))
x = self.classifier(x)
return x
模型训练
使用CIFAR-10数据集进行训练。首先,准备数据集并进行数据增强处理。
from mindspore.dataset import Cifar10Dataset
from mindspore.dataset import vision, transforms
def get_dataset(train_dataset_path, batch_size, usage):
image_trans = []
if usage == "train":
image_trans = [
vision.RandomCrop((32, 32), (4, 4, 4, 4)),
vision.RandomHorizontalFlip(prob=0.5),
vision.Resize((224, 224)),
vision.Rescale(1.0 / 255.0, 0.0),
vision.Normalize([0.4914, 0.4822, 0.4465], [0.2023, 0.1994, 0.2010]),
vision.HWC2CHW()
]
elif usage == "test":
image_trans = [
vision.Resize((224, 224)),
vision.Rescale(1.0 / 255.0, 0.0),
vision.Normalize([0.4914, 0.4822, 0.4465], [0.2023, 0.1994, 0.2010]),
vision.HWC2CHW()
]
label_trans = transforms.TypeCast(ms.int32)
dataset = Cifar10Dataset(train_dataset_path, usage=usage, shuffle=True, num_samples=2000)
dataset = dataset.map(image_trans, 'image')
dataset = dataset.map(label_trans, 'label')
dataset = dataset.batch(batch_size, drop_remainder=True)
return dataset
train_dataset = get_dataset("./dataset/cifar-10-batches-bin", 32, "train")
batches_per_epoch = train_dataset.get_dataset_size()
定义训练过程,包括损失函数、优化器和训练步骤。
import time
from mindspore import Model, nn
from mindspore.train import ModelCheckpoint, CheckpointConfig, TimeMonitor, LossMonitor
from mindspore.nn import Momentum
def train():
ms.set_context(mode=ms.PYNATIVE_MODE, device_target="CPU")
net = ShuffleNetV1(model_size="2.0x", n_class=10)
loss = nn.CrossEntropyLoss(weight=None, reduction='mean', label_smoothing=0.1)
min_lr = 0.0005
base_lr = 0.05
lr_scheduler = nn.cosine_decay_lr(min_lr, base_lr, batches_per_epoch * 2, batches_per_epoch, decay_epoch=2)
lr = Tensor(lr_scheduler[-1])
optimizer = Momentum(params=net.trainable_params(), learning_rate=lr, momentum=0.9, weight_decay=0.00004, loss_scale=1024)
loss_scale_manager = ms.amp.FixedLossScaleManager(1024, drop_overflow_update=False)
model = Model(net, loss_fn=loss, optimizer=optimizer, amp_level="O3", loss_scale_manager=loss_scale_manager)
callback = [TimeMonitor(), LossMonitor()]
save_ckpt_path = "./"
config_ckpt = CheckpointConfig(save_checkpoint_steps=batches_per_epoch, keep_checkpoint_max=5)
ckpt_callback = ModelCheckpoint("shufflenetv1", directory=save_ckpt_path, config=config_ckpt)
callback += [ckpt_callback]
print("============== Starting Training ==============")
start_time = time.time()
model.train(1, train_dataset, callbacks=callback)
use_time = time.time() - start_time
hour = str(int(use_time // 60 // 60))
minute = str(int(use_time // 60 % 60))
second = str(int(use_time % 60))
print("total time:" + hour + "h " + minute + "m " + second + "s")
print("============== Train Success ==============")
if __name__ == '__main__':
train()
模型评估
在CIFAR-10测试集上评估模型性能。
from mindspore import load_checkpoint, load_param_into_net
def test():
ms.set_context(mode=ms.PYNATIVE_MODE, device_target="CPU")
test_dataset = get_dataset("./dataset/cifar-10-batches-bin", 32, "test")
net = ShuffleNetV1(model_size="2.0x", n_class=10)
param_dict = load_checkpoint("shufflenetv1-1_500.ckpt")
load_param_into_net(net, param_dict)
net.set_train(False)
loss = nn.CrossEntropyLoss(weight=None, reduction='mean', label_smoothing=0.1)
eval_metrics = {'Loss': nn.Loss(), 'Top_1_Acc': nn.Top1CategoricalAccuracy(), 'Top_5_Acc': nn.Top5CategoricalAccuracy()}
model = Model(net, loss_fn=loss, metrics=eval_metrics)
start_time = time.time()
res = model.eval(test_dataset, dataset_sink_mode=False)
use_time = time.time() - start_time
hour = str(int(use_time // 60 // 60))
minute = str(int(use_time // 60 % 60))
second = str(int(use_time % 60))
log = "result:" + str(res) + ", ckpt:'" + "./shufflenetv1-1_500.ckpt" + "', time: " + hour + "h " + minute + "m " + second + "s"
print(log)
with open('./eval_log.txt', 'a') as file_object:
file_object.write(log + '\n')
if __name__ == '__main__':
test()
模型预测
在CIFAR-10测试集上进行模型预测,并将预测结果可视化。
import matplotlib.pyplot as plt
import numpy as np
def predict():
net = ShuffleNetV1(model_size="2.0x", n_class=10)
param_dict = load_checkpoint("shufflenetv1-1_500.ckpt")
load_param_into_net(net, param_dict)
model = Model(net)
predict_dataset = get_dataset("./dataset/cifar-10-batches-bin", 32, "test")
class_dict = {0: "airplane", 1: "automobile", 2: "bird", 3: "cat", 4: "deer", 5: "dog", 6: "frog", 7: "horse", 8: "ship", 9: "truck"}
plt.figure(figsize=(16, 5))
for i, data in enumerate(predict_dataset.create_dict_iterator(), 1):
images = data['image']
labels = data['label']
output = model.predict(Tensor(images))
pred = np.argmax(output.asnumpy(), axis=1)
for j in range(len(images)):
plt.subplot(4, 8, i * 8 + j + 1)
plt.title(f'{class_dict[pred[j]]}')
plt.imshow(images[j].transpose(1, 2, 0).asnumpy())
plt.axis("off")
if i == 3: # 只展示前三批次结果
break
plt.show()
if __name__ == '__main__':
predict()
结果
学习心得:学习ShuffleNet的过程中,我对高效计算的卷积神经网络有了更深入的理解。ShuffleNet作为一种轻量级模型,通过引入Pointwise Group Convolution和Channel Shuffle,实现了在有限计算资源下的高效图像分类。在学习过程中,我深入研究了分组卷积和通道重排机制。分组卷积通过将卷积核分组,减少了计算量,但也带来了信息交流的问题。Channel Shuffle机制通过重排通道,解决了不同组别通道信息交流的问题,使得模型在保证计算效率的同时,也能有效地提取图像特征。
如果你觉得这篇博文对你有帮助,请点赞、收藏、关注我,并且可以打赏支持我!
欢迎关注我的后续博文,我将分享更多关于人工智能、自然语言处理、计算机视觉的精彩内容。
谢谢大家的支持!
标签:25,nn,16,self,dataset,channels,打卡,out,size From: https://blog.csdn.net/ljd939952281/article/details/140193443