首页 > 其他分享 >《昇思25天学习打卡营第7天 | 模型训练》

《昇思25天学习打卡营第7天 | 模型训练》

时间:2024-07-04 23:55:53浏览次数:18  
标签:25 训练 nn loss 模型 dataset 938 打卡

《昇思25天学习打卡营第7天 | 模型训练》

目录

模型训练的步骤

模型训练一般分为四个步骤:

  1. 构建数据集。
  2. 定义神经网络模型。
  3. 定义超参、损失函数及优化器。
  4. 输入数据集进行训练与评估。

现在我们有了数据集和模型后,可以进行模型的训练与评估。

构建数据集

首先从数据集 Dataset加载代码,构建数据集。

import mindspore
from mindspore import nn
from mindspore.dataset import vision, transforms
from mindspore.dataset import MnistDataset

# Download data from open datasets
from download import download

url = "https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/" \
      "notebook/datasets/MNIST_Data.zip"
path = download(url, "./", kind="zip", replace=True)


def datapipe(path, batch_size):
    image_transforms = [
        vision.Rescale(1.0 / 255.0, 0),
        vision.Normalize(mean=(0.1307,), std=(0.3081,)),
        vision.HWC2CHW()
    ]
    label_transform = transforms.TypeCast(mindspore.int32)

    dataset = MnistDataset(path)
    dataset = dataset.map(image_transforms, 'image')
    dataset = dataset.map(label_transform, 'label')
    dataset = dataset.batch(batch_size)
    return dataset

train_dataset = datapipe('MNIST_Data/train', batch_size=64)
test_dataset = datapipe('MNIST_Data/test', batch_size=64)

定义神经网络模型

网络构建中加载代码,构建一个神经网络模型。

class Network(nn.Cell):
    def __init__(self):
        super().__init__()
        self.flatten = nn.Flatten()
        self.dense_relu_sequential = nn.SequentialCell(
            nn.Dense(28*28, 512),
            nn.ReLU(),
            nn.Dense(512, 512),
            nn.ReLU(),
            nn.Dense(512, 10)
        )

    def construct(self, x):
        x = self.flatten(x)
        logits = self.dense_relu_sequential(x)
        return logits

model = Network()

定义超参、损失函数和优化器

超参

超参(Hyperparameters)是可以调整的参数,可以控制模型训练优化的过程,不同的超参数值可能会影响模型训练和收敛速度。目前深度学习模型多采用批量随机梯度下降算法进行优化,随机梯度下降算法的原理如下:

w t + 1 = w t − η 1 n ∑ x ∈ B ∇ l ( x , w t ) w_{t+1}=w_{t}-\eta \frac{1}{n} \sum_{x \in \mathcal{B}} \nabla l\left(x, w_{t}\right) wt+1​=wt​−ηn1​x∈B∑​∇l(x,wt​)

公式中, n n n是批量大小(batch size), η η η是学习率(learning rate)。另外, w t w_{t} wt​为训练轮次 t t t中的权重参数, ∇ l \nabla l ∇l为损失函数的导数。除了梯度本身,这两个因子直接决定了模型的权重更新,从优化本身来看,它们是影响模型性能收敛最重要的参数。一般会定义以下超参用于训练:

  • 训练轮次(epoch):训练时遍历数据集的次数。

  • 批次大小(batch size):数据集进行分批读取训练,设定每个批次数据的大小。batch size过小,花费时间多,同时梯度震荡严重,不利于收敛;batch size过大,不同batch的梯度方向没有任何变化,容易陷入局部极小值,因此需要选择合适的batch size,可以有效提高模型精度、全局收敛。

  • 学习率(learning rate):如果学习率偏小,会导致收敛的速度变慢,如果学习率偏大,则可能会导致训练不收敛等不可预测的结果。梯度下降法被广泛应用在最小化模型误差的参数优化算法上。梯度下降法通过多次迭代,并在每一步中最小化损失函数来预估模型的参数。学习率就是在迭代过程中,会控制模型的学习进度。

epochs = 3
batch_size = 64
learning_rate = 1e-2

损失函数

损失函数(loss function)用于评估模型的预测值(logits)和目标值(targets)之间的误差。训练模型时,随机初始化的神经网络模型开始时会预测出错误的结果。损失函数会评估预测结果与目标值的相异程度,模型训练的目标即为降低损失函数求得的误差。

常见的损失函数包括用于回归任务的nn.MSELoss(均方误差)和用于分类的nn.NLLLoss(负对数似然)等。 nn.CrossEntropyLoss 结合了nn.LogSoftmaxnn.NLLLoss,可以对logits 进行归一化并计算预测误差。

loss_fn = nn.CrossEntropyLoss()

优化器

模型优化(Optimization)是在每个训练步骤中调整模型参数以减少模型误差的过程。MindSpore提供多种优化算法的实现,称之为优化器(Optimizer)。优化器内部定义了模型的参数优化过程(即梯度如何更新至模型参数),所有优化逻辑都封装在优化器对象中。在这里,我们使用SGD(Stochastic Gradient Descent)优化器。

我们通过model.trainable_params()方法获得模型的可训练参数,并传入学习率超参来初始化优化器。

optimizer = nn.SGD(model.trainable_params(), learning_rate=learning_rate)

在训练过程中,通过微分函数可计算获得参数对应的梯度,将其传入优化器中即可实现参数优化,具体形态如下:

grads = grad_fn(inputs)

optimizer(grads)

训练与评估

设置了超参、损失函数和优化器后,我们就可以循环输入数据来训练模型。一次数据集的完整迭代循环称为一轮(epoch)。每轮执行训练时包括两个步骤:

  1. 训练:迭代训练数据集,并尝试收敛到最佳参数。
  2. 验证/测试:迭代测试数据集,以检查模型性能是否提升。

接下来我们定义用于训练的train_loop函数和用于测试的test_loop函数。

使用函数式自动微分,需先定义正向函数forward_fn,使用value_and_grad获得微分函数grad_fn。然后,我们将微分函数和优化器的执行封装为train_step函数,接下来循环迭代数据集进行训练即可。

# Define forward function
def forward_fn(data, label):
    logits = model(data)
    loss = loss_fn(logits, label)
    return loss, logits

# Get gradient function
grad_fn = mindspore.value_and_grad(forward_fn, None, optimizer.parameters, has_aux=True)

# Define function of one-step training
def train_step(data, label):
    (loss, _), grads = grad_fn(data, label)
    optimizer(grads)
    return loss

def train_loop(model, dataset):
    size = dataset.get_dataset_size()
    model.set_train()
    for batch, (data, label) in enumerate(dataset.create_tuple_iterator()):
        loss = train_step(data, label)

        if batch % 100 == 0:
            loss, current = loss.asnumpy(), batch
            print(f"loss: {loss:>7f}  [{current:>3d}/{size:>3d}]")

test_loop函数同样需循环遍历数据集,调用模型计算loss和Accuray并返回最终结果。

def test_loop(model, dataset, loss_fn):
    num_batches = dataset.get_dataset_size()
    model.set_train(False)
    total, test_loss, correct = 0, 0, 0
    for data, label in dataset.create_tuple_iterator():
        pred = model(data)
        total += len(data)
        test_loss += loss_fn(pred, label).asnumpy()
        correct += (pred.argmax(1) == label).asnumpy().sum()
    test_loss /= num_batches
    correct /= total
    print(f"Test: \n Accuracy: {(100*correct):>0.1f}%, Avg loss: {test_loss:>8f} \n")

我们将实例化的损失函数和优化器传入train_looptest_loop中。训练3轮并输出loss和Accuracy,查看性能变化。

loss_fn = nn.CrossEntropyLoss()
optimizer = nn.SGD(model.trainable_params(), learning_rate=learning_rate)

for t in range(epochs):
    print(f"Epoch {t+1}\n-------------------------------")
    train_loop(model, train_dataset)
    test_loop(model, test_dataset, loss_fn)
print("Done!")

输出结果

Epoch 1
-------------------------------
loss: 2.302806  [  0/938]
loss: 2.285086  [100/938]
loss: 2.264712  [200/938]
loss: 2.174010  [300/938]
loss: 1.931853  [400/938]
loss: 1.340721  [500/938]
loss: 0.953515  [600/938]
loss: 0.756860  [700/938]
loss: 0.756263  [800/938]
loss: 0.463846  [900/938]
Test: 
 Accuracy: 84.7%, Avg loss: 0.527155 

Epoch 2
-------------------------------
loss: 0.479126  [  0/938]
loss: 0.437443  [100/938]
loss: 0.685504  [200/938]
loss: 0.395121  [300/938]
loss: 0.550566  [400/938]
loss: 0.459457  [500/938]
loss: 0.293049  [600/938]
loss: 0.422102  [700/938]
loss: 0.333153  [800/938]
loss: 0.412182  [900/938]
Test: 
 Accuracy: 90.5%, Avg loss: 0.335083 

Epoch 3
-------------------------------
loss: 0.207366  [  0/938]
loss: 0.343559  [100/938]
loss: 0.391145  [200/938]
loss: 0.317566  [300/938]
loss: 0.200746  [400/938]
loss: 0.445798  [500/938]
loss: 0.603720  [600/938]
loss: 0.170811  [700/938]
loss: 0.411954  [800/938]
loss: 0.315902  [900/938]
Test: 
 Accuracy: 91.9%, Avg loss: 0.279034 

Done!

标签:25,训练,nn,loss,模型,dataset,938,打卡
From: https://blog.csdn.net/qq_35606010/article/details/140139182

相关文章

  • 网络IO模型之多路复用器
    多路复用是什么?怎么理解?本文主要涉及为程序中处理网络IO时的模型,对于系统内核而言网络IO模型。这里只做普及使用前置知识,什么是IO?怎么理解IOIO其实就是In和Out。中文翻译是输入和输出,只要涉及到输入和输出的,我们都可以称之为IO。例如你在磁盘中读取文件,读取文件为In,输出......
  • Python时间序列模型分析太阳能光伏发电数据:灰色模型GM(1,1)、ARIMA、指数平滑法可视化分
    全文链接:https://tecdat.cn/?p=36660原文出处:拓端数据部落公众号在可再生能源领域中,太阳能光伏发电作为一种清洁、可再生的能源形式,近年来得到了广泛关注与应用。随着技术的进步和成本的降低,光伏发电已成为全球能源结构转型的重要方向之一。然而,光伏发电的发电量受多种因素影响,......
  • R语言武汉流动人口趋势预测:灰色模型GM(1,1)、ARIMA时间序列、logistic逻辑回归模型|附代
    全文链接:http://tecdat.cn/?p=32496原文出处:拓端数据部落公众号人口流动与迁移,作为人类产生以来就存在的一种社会现象,伴随着人类文明的不断进步从未间断。人力资源是社会文明进步、人民富裕幸福、国家繁荣昌盛的核心推动力量。当前,我国经济正处于从以政府主导的投资驱动型的经......
  • 2024年7月3日Arxiv语言模型相关论文
    RankRAG:在大语言模型中统一上下文排名与检索增强生成原标题:RankRAG:UnifyingContextRankingwithRetrieval-AugmentedGenerationinLLMs作者:YueYu,WeiPing,ZihanLiu,BoxinWang,JiaxuanYou,ChaoZhang,MohammadShoeybi,BryanCatanzaro机构:乔治......
  • 阿里Qwen2-72B大模型已是开源榜的王者,为什么还要推出其他参数模型,被其他模型打榜?
    6月27日,全球知名的开源平台HuggingFace的联合创始人兼首席执行官Clem在社交平台激动宣布,阿里Qwen2-72B成为了开源模型排行榜的王者。这是一件大好事,说明了我们在大模型领域从先前的追赶,逐渐走向了领导,未来完全有可能会引领着全球开源模型的发展潮流,这是我们的骄傲!不......
  • 同步、异步、阻塞、非阻塞、Linux五种 I/O 模型,一篇文章搞定
    ● 什么是同步、什么是异步?什么是阻塞、什么非阻塞?我自己的理解,大白话啊,同步和异步指的是函数调用完成任务的程度。一个任务的完成,包括发起、执行和结果返回三个阶段。 同步(synchronize)调用涵盖了这三个阶段。调用结束之后,任务肯定是有结果的,无论成败。 ......
  • 手把手教你,利用机器学习模型,构建量化择时策略(附全流程代码)
    歌神演唱会人脸识别抓逃犯,阿尔法狗战胜人类围棋手,AI绘图《太空歌剧院》惊艳艺术博览会,ChatGPT一问解千愁~~~这些震撼成果的背后,都是人工智能在蓬勃发力。既然人工智能/机器学习这么厉害,在其他领域都取得了丰硕的成果和巨大的成功,那么是不是可以让计算机帮咱预测市场大盘、......
  • 【机器学习】Google开源大模型Gemma2:原理、微调训练及推理部署实战
    目录一、引言二、模型简介2.1 Gemma2概述2.2Gemma2 模型架构三、训练与推理3.1Gemma2 模型训练3.1.1下载基座模型3.1.2 导入依赖库3.1.3量化配置3.1.4分词器和模型实例化3.1.5引入PEFT进行LORA配置 3.1.6样本数据清洗与加载3.1.7模型训练与保存3.......
  • 昇思25天学习打卡营第8天|使用静态图加速
            神经网络编译框架分为两种运行模式,分别是动态图模式以及静态图模式。MindSpore默认情况下是以动态图模式运行,但也支持手工切换为静态图模式。动态图模式:        该模式类似Python的解释执行方式,一边编译一遍执行。在计算图中定义一个Tensor时,其值就......
  • Python基于PyQt5和卷积神经网络分类模型(ResNet50分类算法)实现生活垃圾分类系统GUI界
    说明:这是一个机器学习实战项目(附带数据+代码+文档+视频讲解),如需数据+代码+文档+视频讲解可以直接到文章最后获取。1.项目背景在当今社会,随着人们对环境保护意识的增强以及科技的快速发展,智能化的垃圾分类系统成为了一个热门的研究方向。结合深度学习技术,尤其是先进的图像识......