前言
典例剖析
(1). 在两种摸球方式下分别计算事件 \(A_{1}\), \(A_{2}\), \(A_{3}\) 发生的概率的大小关系 .
解:有放回的情况下:
计算\(P(A_1)\)时, \(n(\Omega_{1})\)\(=\)\(C_{10}^1\)\(=\)\(10\),满足有限等可能性,\(n(A_1)\)\(=\)\(C_{4}^1\)\(=\)\(4\),故 \(P(A_1)\)\(=\)\(\cfrac{4}{10}=0.4\);
采用古典概型计算 \(P(A_2)\) 时, \(n(\Omega_{2})\)\(=\)\(C_{10}^1\)\(\times\)\(C_{10}^1\)\(=\)\(100\),满足有限等可能性,\(n(A_2)\)\(=\)\(C_{6}^1\)\(\times\)\(C_{4}^1\)\(+\)\(C_{4}^1\)\(\times\)\(C_{4}^1\)\(=\)\(40\)[包括第一次取到白球第二次取到红球和包括第一次取到红球第二次取到红球两种情况],故 \(P(A_2)\)\(=\)\(\cfrac{40}{100}\)\(=\)\(0.4\);
简化计算模型,采用相互独立事件计算 \(P(A_2)\) ,令前半次取到白球为 \(A\),后半次取到红球为 \(B\),则 \(P(A)\)\(=\)\(\cfrac{6}{10}\), \(P(B)\)\(=\)\(\cfrac{4}{10}\), 前半次取到红球为\(P(\bar{A})\)\(=\)\(\cfrac{4}{10}\), 后半次取到白球为 \(P(\bar{B})\)\(=\)\(\cfrac{6}{10}\),则 \(A_2=AB\cup\bar{A}B\),且 \(A\)、\(B\)相互独立[原因:\(P(AB)\)\(=\)\(\cfrac{24}{100}\)\(=\)\(\cfrac{6}{10}\)\(\times\)\(\cfrac{4}{10}\)], \(\bar{A}\)、\(B\)相互独立,\(AB\) 和 \(\bar{A}B\)彼此互斥,
故 \(P(A_2)\)\(=\)\(\cfrac{6}{10}\)\(\times\)\(\cfrac{4}{10}\)\(+\)\(\cfrac{4}{10}\)\(\times\)\(\cfrac{4}{10}\)\(=\)\(\cfrac{2}{5}\)\(=\)\(0.4\),
计算\(P(A_3)\)时, \(n(\Omega_{3})\)\(=\)\(C_{10}^1\)\(\times\)\(C_{10}^1\)\(\times\)\(C_{10}^1\)\(=\)\(1000\),满足有限等可能性,\(n(A_3)\)\(=\)\(C_{6}^1\)\(\times\)\(C_{6}^1\)\(\times\)\(C_{4}^1\)\(+\)\(C_{6}^1\)\(\times\)\(C_{4}^1\)\(\times\)\(C_{4}^1\)\(+\)\(C_{4}^1\)\(\times\)\(C_{6}^1\)\(\times\)\(C_{4}^1\)\(+\)\(C_{4}^1\)\(\times\)\(C_{4}^1\)\(\times\)\(C_{4}^1\)\(=\)\(400\)[包括一白二白三红,一白二红三红,一红二白三红,一红二红三红共四种情况],故 \(P(A_3)\)\(=\)\(\cfrac{400}{1000}\)\(=\)\(0.4\);
简化计算模型,故 \(P(A_3)\)\(=\)\(\cfrac{6}{10}\)\(\times\)\(\cfrac{6}{10}\)\(\times\)\(\cfrac{4}{10}\)\(+\)\(\cfrac{6}{10}\)\(\times\)\(\cfrac{4}{10}\)\(\times\)\(\cfrac{4}{10}\)\(+\)\(\cfrac{4}{10}\)\(\times\)\(\cfrac{6}{10}\)\(\times\)\(\cfrac{4}{10}\)\(+\)\(\cfrac{4}{10}\)\(\times\)\(\cfrac{4}{10}\)\(\times\)\(\cfrac{4}{10}\)\(=\)\(0.4\),
无放回的情况下:
\(P(A_1)\)\(=\)\(\cfrac{4}{10}=0.4\);
\(P(A_2)\)\(=\)\(\cfrac{6}{10}\)\(\times\)\(\cfrac{4}{9}\)\(+\)\(\cfrac{4}{10}\)\(\times\)\(\cfrac{3}{9}\)\(=\)\(\cfrac{2}{5}\)\(=\)\(0.4\),
\(P(A_3)\)\(=\)\(\cfrac{6}{10}\)\(\times\)\(\cfrac{5}{9}\)\(\times\)\(\cfrac{4}{8}\)\(+\)\(\cfrac{6}{10}\)\(\times\)\(\cfrac{4}{9}\)\(\times\)\(\cfrac{3}{8}\)\(+\)\(\cfrac{4}{10}\)\(\times\)\(\cfrac{6}{9}\)\(\times\)\(\cfrac{3}{8}\)\(+\)\(\cfrac{4}{10}\)\(\times\)\(\cfrac{3}{9}\)\(\times\)\(\cfrac{2}{8}\)\(=\)\(0.4\),
标签:10,抽奖,bar,红球,0.4,次序,times,cfrac,中奖 From: https://www.cnblogs.com/wanghai0666/p/18280045