首页 > 其他分享 >1-3.文本数据建模流程范例

1-3.文本数据建模流程范例

时间:2024-07-01 21:29:20浏览次数:19  
标签:范例 loss val self 建模 metrics __ net 文本

文章最前: 我是Octopus,这个名字来源于我的中文名–章鱼;我热爱编程、热爱算法、热爱开源。所有源码在我的个人github
;这博客是记录我学习的点点滴滴,如果您对 Python、Java、AI、算法有兴趣,可以关注我的动态,一起学习,共同进步。

import os

#mac系统上pytorch和matplotlib在jupyter中同时跑需要更改环境变量
os.environ["KMP_DUPLICATE_LIB_OK"]="TRUE" 

!pip install gensim 
!pip install torchkeras
import torch 
import gensim
import torchkeras 
print("torch.__version__ = ", torch.__version__)
print("gensim.__version__ = ", gensim.__version__) 
print("torchkeras.__version__ = ", torchkeras.__version__) 

torch.__version__ =  2.0.1
gensim.__version__ =  4.3.1
torchkeras.__version__ =  3.9.3

公众号 算法美食屋 回复关键词:pytorch, 获取本项目源码和所用数据集百度云盘下载链接。


一,准备数据

imdb数据集的目标是根据电影评论的文本内容预测评论的情感标签。

训练集有20000条电影评论文本,测试集有5000条电影评论文本,其中正面评论和负面评论都各占一半。

文本数据预处理较为繁琐,包括文本切词,构建词典,编码转换,序列填充,构建数据管道等等。

此处使用gensim中的词典工具并自定义Dataset。

下面进行演示。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

import numpy as np 
import pandas as pd 
import torch 

MAX_LEN = 200           #每个样本保留200个词的长度
BATCH_SIZE = 20 


dftrain = pd.read_csv("./eat_pytorch_datasets/imdb/train.tsv",sep="\t",header = None,names = ["label","text"])
dfval = pd.read_csv("./eat_pytorch_datasets/imdb/test.tsv",sep="\t",header = None,names = ["label","text"])
from gensim import corpora
import string

#1,文本切词
def textsplit(text):
    translator = str.maketrans('', '', string.punctuation)
    words = text.translate(translator).split(' ')
    return words
        
#2,构建词典
vocab = corpora.Dictionary((textsplit(text) for text in dftrain['text']))
vocab.filter_extremes(no_below=5,no_above=5000)
special_tokens = {'<pad>': 0, '<unk>': 1}
vocab.patch_with_special_tokens(special_tokens)
vocab_size = len(vocab.token2id) 
print('vocab_size = ',vocab_size)

#3,序列填充
def pad(seq,max_length,pad_value=0):
    n = len(seq)
    result = seq+[pad_value]*max_length
    return result[:max_length]


#4,编码转换
def text_pipeline(text):
    tokens = vocab.doc2idx(textsplit(text))
    tokens = [x if x>0 else special_tokens['<unk>']  for x in tokens ]
    result = pad(tokens,MAX_LEN,special_tokens['<pad>'])
    return result 

print(text_pipeline("this is an example!")) 

vocab_size =  29924
[145, 77, 569, 55, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

#5,构建管道
from torch.utils.data import Dataset,DataLoader

class ImdbDataset(Dataset):
    def __init__(self,df):
        self.df = df
    def __len__(self):
        return len(self.df)
    def __getitem__(self,index):
        text = self.df["text"].iloc[index]
        label = torch.tensor([self.df["label"].iloc[index]]).float()
        tokens = torch.tensor(text_pipeline(text)).int() 
        return tokens,label
    
ds_train = ImdbDataset(dftrain)
ds_val = ImdbDataset(dfval)

dl_train = DataLoader(ds_train,batch_size = 50,shuffle = True)
dl_val = DataLoader(ds_val,batch_size = 50,shuffle = False)

for features,labels in dl_train:
    break 

二,定义模型

使用Pytorch通常有三种方式构建模型:使用nn.Sequential按层顺序构建模型,继承nn.Module基类构建自定义模型,继承nn.Module基类构建模型并辅助应用模型容器(nn.Sequential,nn.ModuleList,nn.ModuleDict)进行封装。

此处选择使用第三种方式进行构建。

import torch
from torch import nn 
torch.manual_seed(42)

<torch._C.Generator at 0x142700950>
class Net(nn.Module):
    
    def __init__(self):
        super(Net, self).__init__()
        
        #设置padding_idx参数后将在训练过程中将填充的token始终赋值为0向量
        self.embedding = nn.Embedding(num_embeddings = vocab_size,embedding_dim = 3,padding_idx = 0)
        
        self.conv = nn.Sequential()
        self.conv.add_module("conv_1",nn.Conv1d(in_channels = 3,out_channels = 16,kernel_size = 5))
        self.conv.add_module("pool_1",nn.MaxPool1d(kernel_size = 2))
        self.conv.add_module("relu_1",nn.ReLU())
        self.conv.add_module("conv_2",nn.Conv1d(in_channels = 16,out_channels = 128,kernel_size = 2))
        self.conv.add_module("pool_2",nn.MaxPool1d(kernel_size = 2))
        self.conv.add_module("relu_2",nn.ReLU())
        
        self.dense = nn.Sequential()
        self.dense.add_module("flatten",nn.Flatten())
        self.dense.add_module("linear",nn.Linear(6144,1))
        
        
    def forward(self,x):
        x = self.embedding(x).transpose(1,2)
        x = self.conv(x)
        y = self.dense(x)
        return y
        
net = Net() 
print(net)
Net(
  (embedding): Embedding(29924, 3, padding_idx=0)
  (conv): Sequential(
    (conv_1): Conv1d(3, 16, kernel_size=(5,), stride=(1,))
    (pool_1): MaxPool1d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
    (relu_1): ReLU()
    (conv_2): Conv1d(16, 128, kernel_size=(2,), stride=(1,))
    (pool_2): MaxPool1d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
    (relu_2): ReLU()
  )
  (dense): Sequential(
    (flatten): Flatten(start_dim=1, end_dim=-1)
    (linear): Linear(in_features=6144, out_features=1, bias=True)
  )
)
Net(
  (embedding): Embedding(8813, 3, padding_idx=0)
  (conv): Sequential(
    (conv_1): Conv1d(3, 16, kernel_size=(5,), stride=(1,))
    (pool_1): MaxPool1d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
    (relu_1): ReLU()
    (conv_2): Conv1d(16, 128, kernel_size=(2,), stride=(1,))
    (pool_2): MaxPool1d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
    (relu_2): ReLU()
  )
  (dense): Sequential(
    (flatten): Flatten(start_dim=1, end_dim=-1)
    (linear): Linear(in_features=6144, out_features=1, bias=True)
  )
)

from torchkeras import summary 
summary(net,input_data=features);

--------------------------------------------------------------------------
Layer (type)                            Output Shape              Param #
==========================================================================
Embedding-1                             [-1, 200, 3]               89,772
Conv1d-2                               [-1, 16, 196]                  256
MaxPool1d-3                             [-1, 16, 98]                    0
ReLU-4                                  [-1, 16, 98]                    0
Conv1d-5                               [-1, 128, 97]                4,224
MaxPool1d-6                            [-1, 128, 48]                    0
ReLU-7                                 [-1, 128, 48]                    0
Flatten-8                                 [-1, 6144]                    0
Linear-9                                     [-1, 1]                6,145
==========================================================================
Total params: 100,397
Trainable params: 100,397
Non-trainable params: 0
--------------------------------------------------------------------------
Input size (MB): 0.000069
Forward/backward pass size (MB): 0.287788
Params size (MB): 0.382984
Estimated Total Size (MB): 0.670841
--------------------------------------------------------------------------

三,训练模型

训练Pytorch通常需要用户编写自定义训练循环,训练循环的代码风格因人而异。

有3类典型的训练循环代码风格:脚本形式训练循环,函数形式训练循环,类形式训练循环。

此处介绍一种较通用的仿照Keras风格的类形式的训练循环。

该训练循环的代码也是torchkeras库的核心代码。

torchkeras详情: https://github.com/lyhue1991/torchkeras

import os,sys,time
import numpy as np
import pandas as pd
import datetime 
from tqdm import tqdm 

import torch
from torch import nn 
from copy import deepcopy

def printlog(info):
    nowtime = datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S')
    print("\n"+"=========="*8 + "%s"%nowtime)
    print(str(info)+"\n")

class StepRunner:
    def __init__(self, net, loss_fn,stage = "train", metrics_dict = None, 
                 optimizer = None, lr_scheduler = None
                 ):
        self.net,self.loss_fn,self.metrics_dict,self.stage = net,loss_fn,metrics_dict,stage
        self.optimizer,self.lr_scheduler = optimizer,lr_scheduler
    
    def __call__(self, features, labels):
        #loss
        preds = self.net(features)
        loss = self.loss_fn(preds,labels)

        #backward()
        if self.optimizer is not None and self.stage=="train":
            loss.backward()
            self.optimizer.step()
            if self.lr_scheduler is not None:
                self.lr_scheduler.step()
            self.optimizer.zero_grad()
            
        #metrics
        step_metrics = {self.stage+"_"+name:metric_fn(preds, labels).item() 
                        for name,metric_fn in self.metrics_dict.items()}
        return loss.item(),step_metrics


class EpochRunner:
    def __init__(self,steprunner):
        self.steprunner = steprunner
        self.stage = steprunner.stage
        self.steprunner.net.train() if self.stage=="train" else self.steprunner.net.eval()
        
    def __call__(self,dataloader):
        total_loss,step = 0,0
        loop = tqdm(enumerate(dataloader), total =len(dataloader))
        for i, batch in loop: 
            if self.stage=="train":
                loss, step_metrics = self.steprunner(*batch)
            else:
                with torch.no_grad():
                    loss, step_metrics = self.steprunner(*batch)
            step_log = dict({self.stage+"_loss":loss},**step_metrics)

            total_loss += loss
            step+=1
            if i!=len(dataloader)-1:
                loop.set_postfix(**step_log)
            else:
                epoch_loss = total_loss/step
                epoch_metrics = {self.stage+"_"+name:metric_fn.compute().item() 
                                 for name,metric_fn in self.steprunner.metrics_dict.items()}
                epoch_log = dict({self.stage+"_loss":epoch_loss},**epoch_metrics)
                loop.set_postfix(**epoch_log)

                for name,metric_fn in self.steprunner.metrics_dict.items():
                    metric_fn.reset()
        return epoch_log

class KerasModel(torch.nn.Module):
    def __init__(self,net,loss_fn,metrics_dict=None,optimizer=None,lr_scheduler = None):
        super().__init__()
        self.history = {}
        
        self.net = net
        self.loss_fn = loss_fn
        self.metrics_dict = nn.ModuleDict(metrics_dict) 
        
        self.optimizer = optimizer if optimizer is not None else torch.optim.Adam(
            self.parameters(), lr=1e-2)
        self.lr_scheduler = lr_scheduler

    def forward(self, x):
        if self.net:
            return self.net.forward(x)
        else:
            raise NotImplementedError


    def fit(self, train_data, val_data=None, epochs=10, ckpt_path='checkpoint.pt', 
            patience=5, monitor="val_loss", mode="min"):

        for epoch in range(1, epochs+1):
            printlog("Epoch {0} / {1}".format(epoch, epochs))
            
            # 1,train -------------------------------------------------  
            train_step_runner = StepRunner(net = self.net,stage="train",
                    loss_fn = self.loss_fn,metrics_dict=deepcopy(self.metrics_dict),
                    optimizer = self.optimizer, lr_scheduler = self.lr_scheduler)
            train_epoch_runner = EpochRunner(train_step_runner)
            train_metrics = train_epoch_runner(train_data)
            
            for name, metric in train_metrics.items():
                self.history[name] = self.history.get(name, []) + [metric]

            # 2,validate -------------------------------------------------
            if val_data:
                val_step_runner = StepRunner(net = self.net,stage="val",
                    loss_fn = self.loss_fn,metrics_dict=deepcopy(self.metrics_dict))
                val_epoch_runner = EpochRunner(val_step_runner)
                with torch.no_grad():
                    val_metrics = val_epoch_runner(val_data)
                val_metrics["epoch"] = epoch
                for name, metric in val_metrics.items():
                    self.history[name] = self.history.get(name, []) + [metric]
            
            # 3,early-stopping -------------------------------------------------
            if not val_data:
                continue
            arr_scores = self.history[monitor]
            best_score_idx = np.argmax(arr_scores) if mode=="max" else np.argmin(arr_scores)
            if best_score_idx==len(arr_scores)-1:
                torch.save(self.net.state_dict(),ckpt_path)
                print("<<<<<< reach best {0} : {1} >>>>>>".format(monitor,
                     arr_scores[best_score_idx]),file=sys.stderr)
            if len(arr_scores)-best_score_idx>patience:
                print("<<<<<< {} without improvement in {} epoch, early stopping >>>>>>".format(
                    monitor,patience),file=sys.stderr)
                break 
                
        self.net.load_state_dict(torch.load(ckpt_path))  
        return pd.DataFrame(self.history)

    @torch.no_grad()
    def evaluate(self, val_data):
        val_step_runner = StepRunner(net = self.net,stage="val",
                    loss_fn = self.loss_fn,metrics_dict=deepcopy(self.metrics_dict))
        val_epoch_runner = EpochRunner(val_step_runner)
        val_metrics = val_epoch_runner(val_data)
        return val_metrics
        
       
    @torch.no_grad()
    def predict(self, dataloader):
        self.net.eval()
        result = torch.cat([self.forward(t[0]) for t in dataloader])
        return result.data

from torchmetrics import Accuracy

net = Net() 
model = KerasModel(net,
                  loss_fn = nn.BCEWithLogitsLoss(),
                  optimizer= torch.optim.Adam(net.parameters(),lr = 0.01),  
                  metrics_dict = {"acc":Accuracy(task='binary')}
                )

model.fit(dl_train,
    val_data=dl_val,
    epochs=10,
    ckpt_path='checkpoint',
    patience=3,
    monitor='val_acc',
    mode='max')

================================================================================2023-08-02 14:20:21
Epoch 1 / 10



100%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 400/400 [00:10<00:00, 39.28it/s, train_acc=0.496, train_loss=0.701]
100%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 100/100 [00:01<00:00, 51.21it/s, val_acc=0.518, val_loss=0.693]
<<<<<< reach best val_acc : 0.5180000066757202 >>>>>>



================================================================================2023-08-02 14:20:33
Epoch 2 / 10



100%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 400/400 [00:09<00:00, 40.14it/s, train_acc=0.503, train_loss=0.693]
100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 100/100 [00:01<00:00, 54.22it/s, val_acc=0.58, val_loss=0.689]
<<<<<< reach best val_acc : 0.5803999900817871 >>>>>>



================================================================================2023-08-02 14:20:45
Epoch 3 / 10



100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 400/400 [00:10<00:00, 39.46it/s, train_acc=0.69, train_loss=0.58]
100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 100/100 [00:01<00:00, 53.84it/s, val_acc=0.781, val_loss=0.47]
<<<<<< reach best val_acc : 0.7807999849319458 >>>>>>



================================================================================2023-08-02 14:20:57
Epoch 4 / 10



100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 400/400 [00:09<00:00, 40.33it/s, train_acc=0.83, train_loss=0.386]
100%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 100/100 [00:01<00:00, 54.18it/s, val_acc=0.819, val_loss=0.408]
<<<<<< reach best val_acc : 0.8194000124931335 >>>>>>



================================================================================2023-08-02 14:21:09
Epoch 5 / 10



100%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 400/400 [00:09<00:00, 40.63it/s, train_acc=0.893, train_loss=0.262]
100%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 100/100 [00:01<00:00, 55.69it/s, val_acc=0.836, val_loss=0.395]
<<<<<< reach best val_acc : 0.8357999920845032 >>>>>>



================================================================================2023-08-02 14:21:21
Epoch 6 / 10



100%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 400/400 [00:09<00:00, 40.58it/s, train_acc=0.932, train_loss=0.176]
100%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 100/100 [00:01<00:00, 50.93it/s, val_acc=0.828, val_loss=0.456]



================================================================================2023-08-02 14:21:33
Epoch 7 / 10



100%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 400/400 [00:10<00:00, 39.62it/s, train_acc=0.956, train_loss=0.119]
100%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 100/100 [00:01<00:00, 55.26it/s, val_acc=0.829, val_loss=0.558]



================================================================================2023-08-02 14:21:44
Epoch 8 / 10



100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 400/400 [00:09<00:00, 40.58it/s, train_acc=0.973, train_loss=0.0754]
100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 100/100 [00:01<00:00, 52.91it/s, val_acc=0.823, val_loss=0.67]
<<<<<< val_acc without improvement in 3 epoch, early stopping >>>>>>
train_losstrain_accval_lossval_accepoch
00.7010640.495800.6930450.51801
10.6930600.503350.6886560.58042
20.5798670.690100.4695740.78083
30.3856250.829900.4076330.81944
40.2616530.892600.3949010.83585
50.1759210.932100.4556040.82846
60.1191780.956100.5584300.82867
70.0754090.973300.6701720.82328


四,评估模型

import pandas as pd 

history = model.history
dfhistory = pd.DataFrame(history) 
dfhistory 

train_losstrain_accval_lossval_accepoch
00.7010640.495800.6930450.51801
10.6930600.503350.6886560.58042
20.5798670.690100.4695740.78083
30.3856250.829900.4076330.81944
40.2616530.892600.3949010.83585
50.1759210.932100.4556040.82846
60.1191780.956100.5584300.82867
70.0754090.973300.6701720.82328
%matplotlib inline
%config InlineBackend.figure_format = 'svg'

import matplotlib.pyplot as plt

def plot_metric(dfhistory, metric):
    train_metrics = dfhistory["train_"+metric]
    val_metrics = dfhistory['val_'+metric]
    epochs = range(1, len(train_metrics) + 1)
    plt.plot(epochs, train_metrics, 'bo--')
    plt.plot(epochs, val_metrics, 'ro-')
    plt.title('Training and validation '+ metric)
    plt.xlabel("Epochs")
    plt.ylabel(metric)
    plt.legend(["train_"+metric, 'val_'+metric])
    plt.show()
    
plot_metric(dfhistory,"loss")

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

plot_metric(dfhistory,"acc")

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

# 评估
model.evaluate(dl_val)

100%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 100/100 [00:01<00:00, 50.26it/s, val_acc=0.836, val_loss=0.395]





{'val_loss': 0.39490113019943235, 'val_acc': 0.8357999920845032}

五,使用模型

def predict(net,dl):
    net.eval()
    with torch.no_grad():
        result = nn.Sigmoid()(torch.cat([net.forward(t[0]) for t in dl]))
    return(result.data)

y_pred_probs = predict(net,dl_val)
y_pred_probs
tensor([[0.9372],
        [1.0000],
        [0.8672],
        ...,
        [0.5141],
        [0.4756],
        [0.9998]])

六,保存模型

#模型权重已经被保存在了ckpt_path='checkpoint.'
net_clone = Net()
net_clone.load_state_dict(torch.load('checkpoint'))

<All keys matched successfully>

如果本书对你有所帮助,想鼓励一下作者,记得给本项目加一颗星星star⭐️,并分享给你的朋友们喔

标签:范例,loss,val,self,建模,metrics,__,net,文本
From: https://blog.csdn.net/zy345293721/article/details/140110103

相关文章

  • 硬核丨2024文本生成类AI产品横向评测报告
    文本生成/写作”作为使用最高频的AI场景,各类产品如雨后春笋般出现。我们针对办公/学习的写作场景进行了全面系统的评测。希望此次评测结论能够帮您在工作学习中使用AI应用提效。本次评测对象包含文心、通义、kimi等模型厂商及笔灵、迅捷、秘塔等应用厂商共13款产品,评测内容包......
  • MATLAB|基于Copula理论的多风电场风电预测误差时空相关性建模研究
      ......
  • MATLAB|基于Copula理论的多风电场风电预测误差时空相关性建模研究
      ......
  • MATLAB|基于Copula理论的多风电场风电预测误差时空相关性建模研究
      ......
  • 【动画进阶】类 ChatGpt 多行文本打字效果
    今天我们来学习一个有意思的多行文本输入打字效果,像是这样:这个效果其实本身并非特别困难,实现的方式也很多,在本文中,我们更多的会聚焦于整个多行打字效果最后的动态光标的实现。也就是如何在文本不断变长,在不确定行数的情况下,让文字的最末行右侧处,一直有一个不断闪烁的光标效果:......
  • 文本三剑客之sed
    文本三剑客之sed一、sed编辑器的概述1、sed编辑器的概念sed是一种流编辑器,流编辑器会在编辑器处理数据之前基于预先提供的一组规则来编辑数据流。sed编辑器可以根据命令来处理数据流中的数据,这些命令要么从命令行中输入,要么存储在一个命令文本文件中。2、sed编辑器的工作流程......
  • 文本三剑客之grep和awk
    文本三剑客之grep和awk目录文本三剑客之grep和awk一、grep命令grep命令的语法:grep[选项]...查找条件目标文件命令作用-m数字多个匹配只取第一个-v取反-i忽略大小写-n显示匹配的行号-c统计匹配的行数-o仅显示匹配到的字符串-A数字匹配后几......
  • 开源语音转文本Speech-to-Text大模型实战之Wav2Vec篇
    前言近年来,语音转文本(Speech-to-Text,STT)技术取得了长足的进步,广泛应用于各种领域,如语音助手、自动字幕生成、智能客服等。本文将详细介绍如何利用开源语音转文本大模型进行实战,从模型选择、环境搭建、模型训练到实际应用,带您一步步实现语音转文本功能。一、模型选择目前,市......
  • 基于LEAP模型的能源环境发展、碳排放建模预测及不确定性分析
    在国家“3060”碳达峰碳中和的政策背景下,如何寻求经济-能源-环境的平衡有效发展是国家、省份、城市及园区等不同级别经济体的重要课题。根据国家政策、当地能源结构、能源技术发展水平以及相关碳排放指标制定合理有效的低碳能源发展规划需要以科学准确的能源环境发展预测模型为......
  • 基于 ROS 的 Terraform 托管服务轻松部署文本转语音系统 ChatTTS
    介绍ChatTTS是专门为对话场景设计的文本转语音模型,例如LLM助手对话任务。它支持英文和中文两种语言。最大的模型使用了10万小时以上的中英文数据进行训练。ChatTTSwebUI&API为ChatTTS提供了网页界面和API服务。资源编排服务(ResourceOrchestrationService,ROS)是阿里云提......