首页 > 其他分享 >【AI 大模型】大模型应用架构 ( 业务架构 - AI Embedded、AI Copilot、AI Agent | 技术架构 - 提示词、代理 + 函数调用、RAG、Fine-tuning )

【AI 大模型】大模型应用架构 ( 业务架构 - AI Embedded、AI Copilot、AI Agent | 技术架构 - 提示词、代理 + 函数调用、RAG、Fine-tuning )

时间:2024-07-01 00:00:26浏览次数:21  
标签:架构 AI 模型 技术 Agent 应用

文章目录





一、大模型技术方向 - 大模型训练 / 大模型应用



大模型技术 分为两个方向 :

  • 训练大模型 : 少数实力强的公司做这件事 , 如 OpenAI 训练 ChatGPT 大模型 , 百度训练 文心一言 大模型 , 这种技术岗位很少全世界也就几千个 , 技术难度很高 ;
  • 大模型应用 : 使用 别人训练好的大模型 , 建立自己的应用 ;




二、大模型应用 - 业务架构




1、AI Embedded 模式


应用程序 是 传统应用 , 大模型被嵌入到现有的应用程序或服务中 , 作为一个组成部分 , 仅在其中的某个环节 , 使用了 AI 大模型技术 ;

AI Embedded 模式下 , 大模型通常被用来 提升 现有应用的智能化程度 , 以改善 用户体验 或 增加功能 ;

下图中 , 仅在蓝色部分 , 使用了 AI 功能 , 其它应用都是普通功能 ;
在这里插入图片描述

以 CSDN 博客网站为例 , 该网站是一个传统的 Web 网站应用 , 在顶部导航栏有一个 " C 知道 " 链接按钮 ,
在这里插入图片描述

点击 " C 知道 " 按钮 , 跳转到 GPT 大模型对话界面 , 这种应用就是 在传统应用中 , 嵌入了 GPT 大模型应用 , 仅仅是在某个环节中使用了大模型 ;

在这里插入图片描述


2、AI Copilot 模式


在业务中相当于 副驾驶 / 助理 ,

AI 大模型是用户的 合作伙伴 , 协助用户完成某件任务 ,

具有高度的智能化水平 , 如 : 自主性 和 决策能力 ,

可以根据 环境和任务情境 主动作出 决策和行动 ;

在这里插入图片描述

微软 Copilot 就是一个典型的 AI Copilot应用 , 其集成在 WIndows 11 系统中 , 作为侧边栏工具 ;

微软 Copilot 能够

  • 理解用户的语言
  • 执行用户的指令
  • 预测用户的需求

从而在多个业务场景中 为用户提供 智能辅助 ;

在这里插入图片描述


3、AI Agent 模式


AI Agent 模式 中 , AI 大模型 被设计为一种独立的代理系统 , 能够代表用户 执行任务 或 处理事务 , 具有高度自治能力 ;

AI Agent 模式 中 , AI 的操作占比远高于用户操作 ;

在这里插入图片描述

AI Agent 模式 目前没有案例应用 , 架构比较超前 ;

军事领域大有作为 , 可能已经研发成功并使用了 , 如 : 无人机集群 自动扫描 , 自动发现 , 自动跟随 , 自动瞄准 , 自动投弹 ;





三、大模型应用 - 技术架构




1、提示词 技术架构


传统的 ChatGPT 和 文心一言 的用法 ,

用户发一句 " 提示词 Prompt " , 大模型 回一句 " 输出结果 " ;

在这里插入图片描述

这是在 AI 大模型的基础上 , 套了一层对话应用的壳 ;

其本质是调用 GPT 大模型的解码器 , 输入参数是 " 提示词 Prompt " , 得到的结果是 解码器 针对提示词 以及综合 训练的大模型向量数据 根据概率生成的 " 输出结果 " ;


示例说明 : ChatGPT 一问一答 , 在 GPT 大模型上套了一层聊天的壳 ;

在这里插入图片描述


2、Agent + Function Calling 技术架构


Agent + Function Calling 技术架构 的 主体是一个应用程序 , 就不再是春对话方式了 , 应用程序还必须提供对应的 函数 API , 以供 AI 大模型 回调该 API 功能 ;


Agent 表示 AI 主动提出的要求 , Agent 代理程序具有一定的 自主性 和 决策能力 ;

Function Calling 表示 AI 根据提出的要求 , 自动执行的函数 , 这个 函数 API 功能 ,

  • 可以是 应用程序提供的 ;
  • 也可以是 AI 大模型内置的 ;

该技术架构的工作流程如下 :

  • 首先 , 用户的 应用程序 中 输入 " 提示词 " ;
  • 然后 , 进行函数调用 , AI 大模型分析 提示词 , 发现需要调用 " 应用程序 " 的 API , 这是 大模型 " 回调 " 应用 / 大模型 的功能 ;
    • 调用 API 功能完毕后 , 继续看是否满足 " 提示词 " 的要求 , 不满足的话继续进行 函数调用 , 直到满足为止继续执行下一步 ;
  • 最后 , 输出符合 " 提示词 " 要求的 文本结果 ;

在这里插入图片描述

Agent + Function Calling 技术架构 使用非常广泛 , 可以 将自己开发的应用功能嵌入到 AI 大模型中 , 将复杂的 逻辑 分解成 更小的 / 可管理的 部分 , 每个部分通过调用 不同的函数 实现 ;


3、RAG 技术架构


" RAG = Embeddings + Vector Database " 技术架构 ;

RAG 全称 Retrieval-Augmented Generation , 检索增强生成 , 是 结合 " Embeddings 嵌入 " " Vector Database 向量数据库 " 的 技术架构 , 该架构用于 自然语言处理领域 的 信息检索 和 生成任务 ;

Embeddings 嵌入 是 把文字转为 容易计算的 编码向量 ;

Embeddings 嵌入 的 具体操作就是 将 词语或文本 映射到 高维向量空间 的技术 , 高维向量空间 被设计成能够 捕捉 词语或文本 之间的语义关系 , 语言处理模型 能够更好地 理解和处理 自然语言的含义 ;


向量数据库 Vector Database 是一种 专门用于 存储和检索 向量数据 的 数据库系统 , 可以通过 特定的 数据结构和算法 加速 向量之间的 比较和匹配过程 ;


具体的 RAG 技术架构 的执行流程 :

  • 首先 , 用户输入 " 提示词 " 后 ,

  • 然后 , AI 大模型 拿到 " 提示词 " 之后 , 先到 " 向量数据库 " 中 , 检索所有可能与该 " 提示词 " 相关的知识 ,

  • 最后 ,

    • " 提示词 "
    • 根据 " 提示词 " 从 向量数据库 中 检索出来的知识

    一起 传递给 AI 大模型 , 相当于将 " 检索出来的知识 " 追加到了提示词中 , 后面 的 AI 大模型 执行 就相当于 Agent + Function Calling 技术架构 的执行过程 ;

在这里插入图片描述


4、Fine-tuning 微调 技术架构


Fine-tuning 技术架构 , 是在一个已有的 AI 大模型基础上 , 进行微调操作 ;

  • 首先 , 要 预训练模型 , 初期要有一个已经 训练好的 GPT 大模型 ;

  • 然后 , 将 预训练模型 应用到特定的任务上 , 每个任务要有

    • 输入数据格式
    • 输出要求
    • 评估指标
  • 最后 , 验证数据集评估模型性能 , 如果对结果不满意 , 持续进行 超参数调整 和 Fine-tuning 策略的优化 , 直到得到满意结果为止 ;


该技术架构是 AI 大模型最全面的技术架构 ;

在这里插入图片描述

标签:架构,AI,模型,技术,Agent,应用
From: https://blog.csdn.net/han1202012/article/details/140043933

相关文章

  • python 无监督生成模型
    无监督生成模型在机器学习中扮演着重要角色,特别是当我们在没有标签数据的情况下想要生成新的样本或理解数据的内在结构时。一种流行的无监督生成模型是生成对抗网络(GenerativeAdversarialNetworks,GANs)。1.python无监督生成模型GANs由两部分组成:一个生成器(Generator)和一个......
  • Electron | throw new Error('Electron failed to install correctly, please delete
    https://github.com/electron-vite问题原因在install的时候node_modules/electron/中的文件丢失造成程序无法执行解决方案要重新安装加载electron。这只是其中一个解决方案。参考https://github.com/pangxieju/electron-fix//1.npminstal//2.npminstall-gelectron......
  • 妙笔生词是AI音乐创作领域自动写原创歌词的软件
    妙笔生词是一个通过AI人工智能技术实现智能写歌词的软件,是歌词创作必不可少的辅助工具,可以给作词人带来灵感、带来好的词句、好的韵脚、好的意境等等,能够根据作词人的要求,写出各种风格的歌词,比如流行歌词,民谣歌词,摇滚歌词,中国风歌词,儿歌等等,还能根据押韵要求,写出符合作词人要求的......
  • 2029年AI服务器出货量将突破450万台,AI推理服务器即将爆发式增长
    在2020年,新冠疫情与远程办公模式的兴起推动了所有类型服务器的出货量达到峰值,随后几年里,除了AI服务器之外的所有类别都回归到了正常水平。根据Omdia的研究数据,AI服务器的出货量在2020年急剧上升,并且至今未显示出放缓的迹象,预示着AI将成为数据中心应用的主导力量。Omdia在其《......
  • 【机器学习】Datawhale-AI夏令营分子性质AI预测挑战赛
    #ai夏令营#datawhale#夏令营1.赛事简介还是大家熟悉的预测算法类:分子性质AI预测挑战赛要求选手根据提供的demo数据集,可以基于demo数据集进行数据增强、自行搜集数据等方式扩充数据集,并自行划分数据。运用深度学习、强化学习或更加优秀人工智能的方法预测PROTACs的降解......
  • 【转】Androidstudio报错Algorithm HmacPBESHA256 not available
     删除debug.keystone这个文件就可以了。 https://blog.csdn.net/O_PUTI/article/details/138227534 -----参考了更改GradleJDK等的办法都没有用,最终通过一个一个问题拍错解决。第一个问题:版本不一致 第二个问题秘钥获取不成功:删除这个文件 然后就编译成功了。......
  • 【CNN】用MNIST测试各种CNN网络模型性能
    使用MNIST测试各类CNN网络性能,在此记录,以便按需选择网络。除了第一个CNN为自己搭的以外,其余模型使用Pytorch官方模型,这些模型提出时是在ImageNet上进行测试,在此补充在MNIST上的测试。另外时间有限,每种模型只跑一次得出测试数据,实验结果仅供参考各种参数:训练集60000、测......
  • (六)大模型RLHF:PPO原理与源码解读
    大模型RLHF:PPO原理与源码解读原文链接:图解大模型RLHF系列之:人人都能看懂的PPO原理与源码解读本文直接从一个RLHF开源项目源码入手(deepspeed-chat),根据源码的实现细节,给出尽可能丰富的训练流程图,并对所有的公式给出直观的解释。希望可以帮助大家更具象地感受RLHF的训练流程。关......
  • 完全离线的本地问答模型LocalGPT如何实现无公网IP远程连接提问
    文章目录前言环境准备1.localGPT部署2.启动和使用3.安装cpolar内网穿透4.创建公网地址5.公网地址访问6.固定公网地址前言本文主要介绍如何本地部署LocalGPT并实现远程访问,由于localGPT只能通过本地局域网IP地址+端口号的形式访问,实现远程访问还需搭配cpola......
  • Create Detailed Documentation and Export to DOCX
    CreateDetailedDocumentationandExporttoDOCXDr.Explainv6.8addstheabilitytoexporttotheMicrosoftWordDOCXformat,providinggreaterflexibilityfordevelopersandusersalike.Dr.ExplainbyIndigoByteSystemsisasophisticatedso......