前言
复杂事件的刻画
✍️[网摘整理]设 \(A\),\(B\) 是试验 \(E\) 的随机事件,深入体会用基本事件的和或积的运算来刻画复杂事件,并熟练掌握:
① \(A\)发生:\(A=AB+A\bar{B}\);
② 只有 \(A\) 发生:\(A\bar{B}\);
③ \(A\),\(B\) 恰有一个发生:\(A\bar{B}\)+\(\bar{A}B\);
④ \(A\),\(B\) 同时发生:\(AB\);
⑤ \(A\),\(B\) 至少有一个发生:\(A+B\) \(\Leftrightarrow\) \(A\bar{B}+\bar{A}B+AB\);[1]
⑥ \(A\),\(B\)至多有一个发生:\(\bar{A}\bar{B}\)+\(A\bar{B}\)+\(\bar{A}B\);
✍️[网摘整理]设 \(A\),\(B\),\(C\) 是试验 \(E\) 的随机事件,深入体会用基本事件的和或积的运算来刻画复杂事件,并熟练掌握:
①\(A\)发生:\(A\);
②只有\(A\)发生:\(A\bar{B}\bar{C}\);
③\(A\),\(B\),\(C\)恰有一个发生:\(A\bar{B}\bar{C}\)+\(\bar{A}B\bar{C}\)+\(\bar{A}\bar{B}C\);
④\(A\),\(B\),\(C\)同时发生:\(ABC\);
⑤\(A\),\(B\),\(C\)至少有一个发生:\(A+B+C\);
⑥\(A\),\(B\),\(C\)至多有一个发生:\(\bar{A}\bar{B}\bar{C}\)+\(A\bar{B}\bar{C}\)+\(\bar{A}B\bar{C}\)+\(\bar{A}\bar{B}C\);
⑦\(A\),\(B\),\(C\)恰有两个发生:\(AB\bar{C}\)+\(A\bar{B}C\)+\(\bar{A}BC\);
⑧\(A\),\(B\),\(C\)至少两个发生:\(AB\bar{C}\)+\(A\bar{B}C\)+\(\bar{A}BC\)+\(ABC\);
✍️ [网摘整理]采用不放回的方式抽查产品三次,\(A_i(i=1,2,3)\)表示第\(i\)次抽取得到合格品;
①三次都合格:\(A_1A_2A_3\);
②至少一次合格:\(A_1\bar{A_2}\bar{A_3}\)+\(\bar{A_1}A_2\bar{A_3}\)+\(\bar{A_1}\bar{A_2}A_3\)+\(A_1A_2\bar{A_3}\)+\(A_1\bar{A_2}A_3\)+\(\bar{A_1}A_2A_3\)+\(A_1A_2A_3\);
③恰有两次合格:\(A_1A_2\bar{A_3}\)+\(A_1\bar{A_2}A_3\)+\(\bar{A_1}A_2A_3\);
④至多一次合格:\(\bar{A_1}\bar{A_2}\bar{A_3}\)+\(A_1\bar{A_2}\bar{A_3}\)+\(\bar{A_1}A_2\bar{A_3}\)+\(\bar{A_1}\bar{A_2}A_3\);
典例剖析
⑴. “星队”至少猜对 \(3\) 个成语的概率;
解析:先定义事件,记“星队”至少猜对3个成语 为事件\(E\),
“甲第一轮猜对”为事件\(A\),“乙第一轮猜对”为事件\(B\),
“甲第二轮猜对”为事件\(C\),“乙第二轮猜对”为事件\(D\),
且\(P(A)=P(C)=\cfrac{3}{4}\),\(P(B)=P(D)=\cfrac{2}{3}\),
则\(E=ABCD+\bar{A}BCD+A\bar{B}CD+AB\bar{C}D+ABC\bar{D}\),事件\(A、B、C、D\)相互独立,
事件\(ABCD、\bar{A}BCD、A\bar{B}CD、AB\bar{C}D、ABC\bar{D}\)互斥,故有
\(P(E)\)\(=\)\(P(ABCD+\bar{A}BCD+A\bar{B}CD+AB\bar{C}D+ABC\bar{D})\)
\(=\)\(P(ABCD)+P(\bar{A}BCD)+P(A\bar{B}CD)+P(AB\bar{C}D)+P(ABC\bar{D})\),
\(=\cfrac{3}{4}\times\cfrac{2}{3}\times\cfrac{3}{4}\times\cfrac{2}{3}\)\(+\)\(\cfrac{1}{4}\times\cfrac{2}{3}\times\cfrac{3}{4}\times\cfrac{2}{3}\)\(+\)\(\cfrac{3}{4}\times\cfrac{1}{3}\times\cfrac{3}{4}\times\cfrac{2}{3}\)\(+\)\(\cfrac{3}{4}\times\cfrac{2}{3}\times\cfrac{1}{4}\times\cfrac{2}{3}\)\(+\)\(\cfrac{3}{4}\times\cfrac{2}{3}\times\cfrac{3}{4}\times\cfrac{1}{3}\)\(=\)\(\cfrac{2}{3}\).
解析:先定义事件,记 “星队” 猜对3个成语 为事件\(E\),“甲第一轮猜对”为事件\(A\),“乙第一轮猜对”为事件\(B\),“甲第二轮猜对”为事件\(C\),“乙第二轮猜对”为事件\(D\),且\(P(A)=P(C)=\cfrac{3}{4}\),\(P(B)=P(D)=\cfrac{2}{3}\),
则\(E\)\(=\)\(\bar{A}BCD\)\(+\)\(A\bar{B}CD\)\(+\)\(AB\bar{C}D\)\(+\)\(ABC\bar{D}\)[到此已经完成了用基本事件来刻画题目中的复杂事件],由每轮活动中甲乙猜对与否互不影响,各轮结果亦互不影响,可知事件\(A、B、C、D\)相互独立,且事件\(ABCD、\bar{A}BCD、A\bar{B}CD、AB\bar{C}D、ABC\bar{D}\)互斥,故有
\(P(E)\)\(=\)\(P(\bar{A}BCD+A\bar{B}CD+AB\bar{C}D+ABC\bar{D})\)
\(=\)\(P(\bar{A}BCD)+P(A\bar{B}CD)+P(AB\bar{C}D)+P(ABC\bar{D})\),
\(=\)\(\cfrac{1}{4}\times\cfrac{2}{3}\times\cfrac{3}{4}\times\cfrac{2}{3}\)\(+\)\(\cfrac{3}{4}\times\cfrac{1}{3}\times\cfrac{3}{4}\times\cfrac{2}{3}\)\(+\)\(\cfrac{3}{4}\times\cfrac{2}{3}\times\cfrac{1}{4}\times\cfrac{2}{3}\)\(+\)\(\cfrac{3}{4}\times\cfrac{2}{3}\times\cfrac{3}{4}\times\cfrac{1}{3}\)\(=\)\(\cfrac{5}{12}\).
集合满足分配律: \(A\cap(B\cup C)=(A\cap B)\cup(A\cap C)\)
转化过程1:\(A\bar{B}+\bar{A}B+AB=A\bar{B}+\bar{A}B+AB+AB\)
\(=\)\(A\bar{B}+AB+\bar{A}B+AB=(A\bar{B}+AB)+(\bar{A}B+AB)=A+B\);
转化过程2:\(A+B=A\Omega+B\Omega=A(B+\bar{B})+B(A+\bar{A})=AB+A\bar{B}+BA+B\bar{A}=A\bar{B}+\bar{A}B+AB\) ↩︎