首页 > 其他分享 >[题解]AT_arc116_b [ARC116B] Products of Min-Max

[题解]AT_arc116_b [ARC116B] Products of Min-Max

时间:2024-06-23 13:13:05浏览次数:20  
标签:ARC116B arc116 Min int 题解 sum times

思路

我们容易可以得到一个朴素的做法,首先对 \(a\) 数组排序,然后枚举最大值和最小值 \(a_i,a_j\),那么对于中间的元素都有选与不选两种情况,得到答案:

\[ \sum_{i = 1}^{n}(a_i \times a_i + (\sum_{j = i + 1}^{n}a_i \times a_j \times 2^{j - i - 1})) \]

然后对这个式子做一个化简:

\[ \sum_{i = 1}^{n}(a_i \times a_i + a_i \times (\sum_{j = i + 1}^{n}a_j \times 2^{j - i - 1})) \]

发现对于每一个 \(i\),\(a_j \times 2^{j - i - 1}\) 都是类似的,所以考虑预处理。

定义 \(m_i = \sum_{j = 1}^{i}(a_j \times 2^j)\),那么发现:

\[ m_n - m_i = \sum_{j = i + 1}^{n}{a_j}\times 2^j \]

然后,发现对于每一项 \(j\) 对于原式都多乘了一个 \(2^{i + 1}\),直接除掉即可。得答案为:

\[ \sum_{i = 1}^n{(a_i \times a_i + \frac{m_n - m_i}{2^{i + 1}} \times a_i)} \]

时间复杂度 \(\Theta(n \log n)\)。

Code

#include <bits/stdc++.h>  
#define int long long  
#define re register  
  
using namespace std;  
  
const int N = 2e5 + 10,mod = 998244353;  
int n,ans;  
int arr[N],pot[N],mul[N],inv[N];  
  
inline int read(){  
    int r = 0,w = 1;  
    char c = getchar();  
    while (c < '0' || c > '9'){  
        if (c == '-') w = -1;  
        c = getchar();  
    }  
    while (c >= '0' && c <= '9'){  
        r = (r << 3) + (r << 1) + (c ^ 48);  
        c = getchar();  
    }  
    return r * w;  
}  
  
inline int Add(int a,int b){  
    return (a + b) % mod;  
}  
  
inline int Sub(int a,int b){  
    return ((a - b) % mod + mod) % mod;  
}  
  
inline int Mul(int a,int b){  
    return a * b % mod;  
}  
  
inline void exgcd(int a,int b,int &x,int &y){  
    if (!b){  
        x = 1;  
        y = 0;  
        return;  
    }  
    exgcd(b,a % b,y,x);  
    y = y - a / b * x;  
}  
  
inline int get_inv(int a,int p){  
    int x,y;  
    exgcd(a,p,x,y);  
    return (x % mod + mod) % mod;  
}  
  
inline void init(){  
    pot[0] = 1;  
    for (re int i = 1;i <= n + 1;i++){  
        pot[i] = Mul(pot[i - 1],2);  
        mul[i] = Add(mul[i - 1],Mul(arr[i],pot[i]));  
        inv[i] = get_inv(pot[i],mod);  
    }  
}  
  
signed main(){  
    n = read();  
    for (re int i = 1;i <= n;i++) arr[i] = read();  
    sort(arr + 1,arr + n + 1);  
    init();  
    for (re int i = 1;i <= n;i++){  
        ans = Add(ans,Mul(Mul(Sub(mul[n],mul[i]),inv[i + 1]),arr[i]));  
        ans = Add(ans,Mul(arr[i],arr[i]));  
    }  
    printf("%lld",ans);  
    return 0;  
}  

标签:ARC116B,arc116,Min,int,题解,sum,times
From: https://www.cnblogs.com/WaterSun/p/18263293

相关文章

  • [题解]AT_arc113_c [ARC113C] String Invasion
    题意给定一个字符串\(S\),你可以选择一个\(i(1\leqi\leq|S|)\),如果\(s_i=s_{i+1}\neqs_{i+2}\),就将\(s_{i+2}\)设为\(s_i\)。问:最多能操作几次。思路我们可以用一个后缀和\(s_{i,j}\)维护\(S_i\simS_n\)中与\(j\)不同的数量。然后,我们可以发现一......
  • [题解]AT_arc079_c [ARC079E] Decrease (Judge ver
    思路首先,对于每一次操作,我们可以先找到最大值,然后对其操作。这样,我们可以得到单次操作时间复杂度\(\Theta(n)\)的代码,因为\(n\)很小,所以这道题时间复杂度的瓶颈在于操作的数量。那么,我们想到每一次找到最大值时,直接将其减到小于\(n\)。但是这样可能有一种问题,就是最大值......
  • [题解]AT_agc054_b [AGC054B] Greedy Division
    思路首先不难发现一个规律,当\(sum\)为奇数时不可能有解。定义\(dp_{i,j,k,0/1}\)表示A在前\(i\)个数中选出和为\(j\)的\(k\)个数,且第\(i\)个不选/选的方案数。那么,我们只需要对于第\(i\)个数的状态分类讨论就能得到状态转移方程:不选\(i\),\(dp_{i,j,k,0}=......
  • [题解]AT_abc350_g [ABC350G] Mediator
    思路有加边操作,一眼LCT。问题在于处理询问操作。首先,判断联通。如果\(x,y\)不在同一个联通块内,则一定没有答案。其次,求出\(x,y\)之间节点的数量\(num\)(包括\(x,y\))。如果\(num=3\)说明\(x,y\)之间有一个共同的节点;如果\(num=2\)说明\(x,y\)直接连接;如果\(n......
  • [题解]AT_abc343_g [ABC343G] Compress Strings
    思路首先假设有两个串\(a,b\),如果\(b\)是\(a\)的子串,且\(a\neqb\)则不需要考虑\(b\);如果\(a=b\),则如需要保留一个\(a\)。做完上述操作后,显然最终的答案是由这些串按照一定顺序拼接起来,再删掉重叠部分。例如:abbcc与ccdde拼接为abbccccdde,发现cc是重复的,所以......
  • [题解]AT_abc342_f [ABC342F] Black Jack
    思路发现自己与庄家的操作是完全独立的,所以考虑分别计算它们。首先考虑自己的情况,定义\(dp_i\)表示掷出骰子的和为\(i\)获胜的概率,并记\(f(i)\)表示\(x=i\)时就不掷的获胜概率。对于每一步我们要么掷骰子(并且掷出的值等概率的在\(1\simD\)中),要么直接结束。两种情......
  • [题解]CF855E Salazar Slytherin's Locket
    思路毒瘤数位DP题。首先,你可以用一个vector储存每一个数字出现的次数,然后用map记忆化。然后可以得到如下TLE#8的代码。因为map自带一只\(\log\)所以,考虑将map优化掉。但是,现在每一种数字可能会出现很多次,所以要用vector维护出现次数,但这样必定需要用map一......
  • [题解]CF666B World Tour
    CSP-2022S2T1弱化版。思路首先因为边权均为\(1\),所以我们可以在\(\Theta(n^2)\)的复杂度用BFS求解出任意两点\(i,j\)的最短距离\(d_{i,j}\)(如果\(i\)不能到达\(j\),则令\(d_{i,j}=-1\))。有一个贪心的结论,就是使每一条\(A\toB,B\toC,C\toD\)的路径长度......
  • [题解]CF622F The Sum of the k-th Powers
    思路首先发现\(\sum_{i=1}^{n}i^k\)是一个\(k+1\)次多项式,那么我们需要求出\(k+2\)个点才能得到唯一的一个\(f(t)=\sum_{i=1}^{t}{i^k}\)。不难通过拉格朗日插值法,将\(x=1\sim(k+2)\)的情况一一带入:\[f(n)=\sum_{i=1}^{k+2}{((\sum_{j=1}^{i}......
  • [题解]CF622D Optimal Number Permutation
    思路首先考虑答案下界,因为\((n-i)\)和\(|d_i+i-n|\)均大于等于\(0\),所以它们相乘一定大于等于\(0\)。于是考虑能不能构造出结果为\(0\)。显然当\(i=n\)时,无论\(d_i\)的值是什么,式子的结果为\(0\)。因此只需要考虑\(i\in[1,n)\)的情况。因为要使结果为......