首页 > 其他分享 >[Golang并发]Sync.Mutex

[Golang并发]Sync.Mutex

时间:2024-06-23 11:21:30浏览次数:19  
标签:mutexLocked old mutexStarving goroutine Sync Golang state mutex Mutex

源码

// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

// Package sync provides basic synchronization primitives such as mutual
// exclusion locks. Other than the [Once] and [WaitGroup] types, most are intended
// for use by low-level library routines. Higher-level synchronization is
// better done via channels and communication.
//
// Values containing the types defined in this package should not be copied.
package sync

import (
	"internal/race"
	"sync/atomic"
	"unsafe"
)

// Provided by runtime via linkname.
func throw(string)
func fatal(string)

// A Mutex is a mutual exclusion lock.
// The zero value for a Mutex is an unlocked mutex.
//
// A Mutex must not be copied after first use.
//
// In the terminology of [the Go memory model],
// the n'th call to [Mutex.Unlock] “synchronizes before” the m'th call to [Mutex.Lock]
// for any n < m.
// A successful call to [Mutex.TryLock] is equivalent to a call to Lock.
// A failed call to TryLock does not establish any “synchronizes before”
// relation at all.
//
// [the Go memory model]: https://go.dev/ref/mem
type Mutex struct {
	state int32
	sema  uint32
}

// A Locker represents an object that can be locked and unlocked.
type Locker interface {
	Lock()
	Unlock()
}

const (
	mutexLocked = 1 << iota // mutex is locked 001
	mutexWoken              // 010
	mutexStarving           // 100
	mutexWaiterShift = iota // 3

	// Mutex fairness.
	//
	// Mutex can be in 2 modes of operations: normal and starvation.
	// In normal mode waiters are queued in FIFO order, but a woken up waiter
	// does not own the mutex and competes with new arriving goroutines over
	// the ownership. New arriving goroutines have an advantage -- they are
	// already running on CPU and there can be lots of them, so a woken up
	// waiter has good chances of losing. In such case it is queued at front
	// of the wait queue. If a waiter fails to acquire the mutex for more than 1ms,
	// it switches mutex to the starvation mode.
	//
	// In starvation mode ownership of the mutex is directly handed off from
	// the unlocking goroutine to the waiter at the front of the queue.
	// New arriving goroutines don't try to acquire the mutex even if it appears
	// to be unlocked, and don't try to spin. Instead they queue themselves at
	// the tail of the wait queue.
	//
	// If a waiter receives ownership of the mutex and sees that either
	// (1) it is the last waiter in the queue, or (2) it waited for less than 1 ms,
	// it switches mutex back to normal operation mode.
	//
	// Normal mode has considerably better performance as a goroutine can acquire
	// a mutex several times in a row even if there are blocked waiters.
	// Starvation mode is important to prevent pathological cases of tail latency.
	starvationThresholdNs = 1e6
)

// Lock locks m.
// If the lock is already in use, the calling goroutine
// blocks until the mutex is available.
func (m *Mutex) Lock() {
	// Fast path: grab unlocked mutex.
	if atomic.CompareAndSwapInt32(&m.state, 0, mutexLocked) {
		if race.Enabled {
			race.Acquire(unsafe.Pointer(m))
		}
		return
	}
	// Slow path (outlined so that the fast path can be inlined)
	m.lockSlow()
}

// TryLock tries to lock m and reports whether it succeeded.
//
// Note that while correct uses of TryLock do exist, they are rare,
// and use of TryLock is often a sign of a deeper problem
// in a particular use of mutexes.
func (m *Mutex) TryLock() bool {
	old := m.state
	if old&(mutexLocked|mutexStarving) != 0 {
		return false
	}

	// There may be a goroutine waiting for the mutex, but we are
	// running now and can try to grab the mutex before that
	// goroutine wakes up.
	if !atomic.CompareAndSwapInt32(&m.state, old, old|mutexLocked) {
		return false
	}

	if race.Enabled {
		race.Acquire(unsafe.Pointer(m))
	}
	return true
}

func (m *Mutex) lockSlow() {
	var waitStartTime int64
	starving := false
	awoke := false
	iter := 0
	old := m.state
	for {
		// Don't spin in starvation mode, ownership is handed off to waiters
		// so we won't be able to acquire the mutex anyway.
		if old&(mutexLocked|mutexStarving) == mutexLocked && runtime_canSpin(iter) {
			// Active spinning makes sense.
			// Try to set mutexWoken flag to inform Unlock
			// to not wake other blocked goroutines.
			if !awoke && old&mutexWoken == 0 && old>>mutexWaiterShift != 0 &&
				atomic.CompareAndSwapInt32(&m.state, old, old|mutexWoken) {
				awoke = true
			}
			runtime_doSpin()
			iter++
			old = m.state
			continue
		}
		new := old
		// Don't try to acquire starving mutex, new arriving goroutines must queue.
		if old&mutexStarving == 0 {
			new |= mutexLocked
		}
		if old&(mutexLocked|mutexStarving) != 0 {
			new += 1 << mutexWaiterShift
		}
		// The current goroutine switches mutex to starvation mode.
		// But if the mutex is currently unlocked, don't do the switch.
		// Unlock expects that starving mutex has waiters, which will not
		// be true in this case.
		if starving && old&mutexLocked != 0 {
			new |= mutexStarving
		}
		if awoke {
			// The goroutine has been woken from sleep,
			// so we need to reset the flag in either case.
			if new&mutexWoken == 0 {
				throw("sync: inconsistent mutex state")
			}
			new &^= mutexWoken
		}
		if atomic.CompareAndSwapInt32(&m.state, old, new) {
			if old&(mutexLocked|mutexStarving) == 0 {
				break // locked the mutex with CAS
			}
			// If we were already waiting before, queue at the front of the queue.
			queueLifo := waitStartTime != 0
			if waitStartTime == 0 {
				waitStartTime = runtime_nanotime()
			}
			runtime_SemacquireMutex(&m.sema, queueLifo, 1)
			starving = starving || runtime_nanotime()-waitStartTime > starvationThresholdNs
			old = m.state
			if old&mutexStarving != 0 {
				// If this goroutine was woken and mutex is in starvation mode,
				// ownership was handed off to us but mutex is in somewhat
				// inconsistent state: mutexLocked is not set and we are still
				// accounted as waiter. Fix that.
				if old&(mutexLocked|mutexWoken) != 0 || old>>mutexWaiterShift == 0 {
					throw("sync: inconsistent mutex state")
				}
				delta := int32(mutexLocked - 1<<mutexWaiterShift)
				if !starving || old>>mutexWaiterShift == 1 {
					// Exit starvation mode.
					// Critical to do it here and consider wait time.
					// Starvation mode is so inefficient, that two goroutines
					// can go lock-step infinitely once they switch mutex
					// to starvation mode.
					delta -= mutexStarving
				}
				atomic.AddInt32(&m.state, delta)
				break
			}
			awoke = true
			iter = 0
		} else {
			old = m.state
		}
	}

	if race.Enabled {
		race.Acquire(unsafe.Pointer(m))
	}
}

// Unlock unlocks m.
// It is a run-time error if m is not locked on entry to Unlock.
//
// A locked [Mutex] is not associated with a particular goroutine.
// It is allowed for one goroutine to lock a Mutex and then
// arrange for another goroutine to unlock it.
func (m *Mutex) Unlock() {
	if race.Enabled {
		_ = m.state
		race.Release(unsafe.Pointer(m))
	}

	// Fast path: drop lock bit.
	new := atomic.AddInt32(&m.state, -mutexLocked)
	if new != 0 {
		// Outlined slow path to allow inlining the fast path.
		// To hide unlockSlow during tracing we skip one extra frame when tracing GoUnblock.
		m.unlockSlow(new)
	}
}

func (m *Mutex) unlockSlow(new int32) {
	if (new+mutexLocked)&mutexLocked == 0 {
		fatal("sync: unlock of unlocked mutex")
	}
	if new&mutexStarving == 0 {
		old := new
		for {
			// If there are no waiters or a goroutine has already
			// been woken or grabbed the lock, no need to wake anyone.
			// In starvation mode ownership is directly handed off from unlocking
			// goroutine to the next waiter. We are not part of this chain,
			// since we did not observe mutexStarving when we unlocked the mutex above.
			// So get off the way.
			if old>>mutexWaiterShift == 0 || old&(mutexLocked|mutexWoken|mutexStarving) != 0 {
				return
			}
			// Grab the right to wake someone.
			new = (old - 1<<mutexWaiterShift) | mutexWoken
			if atomic.CompareAndSwapInt32(&m.state, old, new) {
				runtime_Semrelease(&m.sema, false, 1)
				return
			}
			old = m.state
		}
	} else {
		// Starving mode: handoff mutex ownership to the next waiter, and yield
		// our time slice so that the next waiter can start to run immediately.
		// Note: mutexLocked is not set, the waiter will set it after wakeup.
		// But mutex is still considered locked if mutexStarving is set,
		// so new coming goroutines won't acquire it.
		runtime_Semrelease(&m.sema, true, 1)
	}
}

源码详解

mutex结构

type Mutex struct {
	state int32
	sema  uint32
}

Sync.Mutex由两个字段构成,state用来表示当前互斥锁处于的状态,sema用于控制锁状态的信号量

互斥锁state(32bit)主要记录了如下四种状态:

  • waiter_num(29bit):记录了当前等待这个锁的goroutine数量
  • starving(1bit):当前锁是否处于饥饿状态,0: 正常状态 1: 饥饿状态
  • woken(1bit):当前锁是否有goroutine已被唤醒。 0:没有goroutine被唤醒; 1: 有goroutine正在加锁过程
    Woken 状态用于加锁和解锁过程的通信,例如,同一时刻,两个协程一个在加锁,一个在解锁,在加锁的协程可能在自旋过程中,此时把 Woken 标记为 1,用于通知解锁协程不必释放信号量了。
  • locked(1bit):当前锁是否被goroutine持有。 0: 未被持有 1: 已被持有

sema信号量的作用:当持有锁的gorouine释放锁后,会释放sema信号量,这个信号量会唤醒之前抢锁阻塞的gorouine来获取锁。

自旋

自旋过程是指,goroutine尝试加锁时,如果当前 Locked 位为 1,则说明该锁当前是由其他协程持有,尝试加锁的协程并不会马上转入阻塞队列,而是会持续的探测 Locked 位是否变为 0。自旋的时间很短,但如果在自旋过程中发现锁已被释放,那么协程可以立即获取锁。此时即便有协程被唤醒也无法获取锁,只能再次阻塞,这个可不是我们想要的。
自旋的好处是,当加锁失败时不必立即转入阻塞,有一定机会获取到锁,这样可以避免协程的切换。但是自旋会导致阻塞队列中的goroutine一直获取不到锁,处于饥饿状态

自旋必须满足以下所有条件:

  • 自旋的次数要足够小,通常为4,即「自旋最多为4次」
  • CPU 核数要大于1,否则自旋是没有意义的,因为此时不可能有其他协程释放锁
  • 协程调度机制中的 Process 数量要大于 1,比如使用 GOMAXPROCS() 将处理器设置为 1 就不能启用自旋
  • 协程调度机制中的可运行队列必须为空,否则会延迟协程调度

为了避免协程长时间无法获取锁,自1.8版本以来增加了一个状态,即 Mutex 的 Starving 状态。这个状态下不会自旋,而是直接进入阻塞队列,一旦有协程释放锁,那么一定会唤醒一个阻塞队列中的协程并成功加锁。

常量

const (
	mutexLocked = 1 << iota // mutex is locked 001
	mutexWoken              // 010
	mutexStarving           // 100
	mutexWaiterShift = iota // 3
	starvationThresholdNs = 1e6
)

首先,iota 是Go语言中的一个预定义标识符,用于在常量声明中生成连续的整数值。它的初始值为0,并且每次在常量声明中使用时都会自动递增。
在这段代码中,首先定义了 mutexLocked 常量,它的值是 1 << iota,即 1 左移 0 位,结果仍然是 1。因此,mutexLocked 的值是 1,代表互斥锁被锁定。
接下来,mutexWoken 的值是 1 << iota,即 1 左移 1 位,结果是 2。因此,mutexWoken 的值是 2,代表互斥锁被唤醒。
然后,mutexStarving 的值是 1 << iota,即 1 左移 2 位,结果是 4。因此,mutexStarving 的值是 4,代表互斥锁出现饥饿状态。
最后,mutexWaiterShift = iota 将 iota 的值赋给 mutexWaiterShift,此时 iota 的值为 3。因此,mutexWaiterShift 的值是 3。
综上所述,这段代码定义了互斥锁的不同状态的常量值,分别是 1(锁定)、2(唤醒)、4(饥饿),并且将 iota 的值 3 赋给了 mutexWaiterShift。

常量池中还包含这样一段注释,让我们翻译一下

// Mutex fairness.
//
// Mutex can be in 2 modes of operations: normal and starvation.
// In normal mode waiters are queued in FIFO order, but a woken up waiter
// does not own the mutex and competes with new arriving goroutines over
// the ownership. New arriving goroutines have an advantage -- they are
// already running on CPU and there can be lots of them, so a woken up
// waiter has good chances of losing. In such case it is queued at front
// of the wait queue. If a waiter fails to acquire the mutex for more than 1ms,
// it switches mutex to the starvation mode.
//
// In starvation mode ownership of the mutex is directly handed off from
// the unlocking goroutine to the waiter at the front of the queue.
// New arriving goroutines don't try to acquire the mutex even if it appears
// to be unlocked, and don't try to spin. Instead they queue themselves at
// the tail of the wait queue.
//
// If a waiter receives ownership of the mutex and sees that either
// (1) it is the last waiter in the queue, or (2) it waited for less than 1 ms,
// it switches mutex back to normal operation mode.
//
// Normal mode has considerably better performance as a goroutine can acquire
// a mutex several times in a row even if there are blocked waiters.
// Starvation mode is important to prevent pathological cases of tail latency.

互斥公平性。

互斥可以有两种操作模式:正常和饥饿。
在正常模式下,等待者按 FIFO 顺序排队,但唤醒的等待者不拥有互斥,并与新到达的 goroutine 争夺所有权。新到达的 goroutine 具有优势——它们已经在 CPU 上运行,并且可能有很多,因此唤醒的等待者很有可能失败。在这种情况下,它会排在等待队列的前面。如果等待者超过 1 毫秒无法获取互斥,它会将互斥切换到饥饿模式。

在饥饿模式下,互斥的所有权直接从解锁的 goroutine 移交给队列前面的等待者。新到达的 goroutine 不会尝试获取互斥,即使它似乎已被解锁,也不会尝试旋转。相反,它们将自己排在等待队列的末尾。

如果等待者获得互斥锁的所有权并发现
(1) 它是队列中的最后一个等待者,或者 (2) 它等待的时间少于 1 毫秒,
它会将互斥锁切换回正常操作模式。

正常模式的性能要好得多,因为即使有阻塞的等待者,goroutine 也可以连续多次获取互斥锁。
饥饿模式对于防止尾部延迟的情况非常重要(即避免饥饿)。

old & (mutexLocked | mutexStarving)

old & (mutexLocked | mutexStarving) 使用按位与操作符(&)检查 old 是否处于 mutexLockedmutexStarving 状态。这里的 mutexLockedmutexStarving 都是 2 的幂,因此它们在二进制表示中只有一个位为 1。这使得我们可以在一个整数值中存储和检查多个这样的标记。

  1. 首先,使用按位或操作符(|)将 mutexLockedmutexStarving 进行按位或操作。结果是一个整数值,其二进制表示中的第 1 位和第 3 位都为 1(即 0101,十进制为 5)。
  2. 接下来,使用按位与操作符(&)将 old 与上一步的结果相与。这个操作会将 old 的二进制表示与 0101 进行按位与操作,即比较 old 中的第 1 位和第 3 位是否为 1。
  3. 如果第 1 位或第 3 位为 1,那么结果将不为零,表示 old 具有 mutexLockedmutexStarving 状态标记。只要具有其中一个标记,结果都将不为0

通过这个表达式,我们可以快速地检查整数值 old 是否同时具有 mutexLockedmutexStarving 这两个状态标记,从而了解互斥锁的当前状态。这是一种高效的位操作技巧,可以节省内存空间,并提高代码执行速度。

Lock

func (m *Mutex) Lock() {
	// 这里首先尝试直接上锁
	// 当mutex不处在locked状态时,尝试直接上锁,也就是将locked位修改为1
	if atomic.CompareAndSwapInt32(&m.state, 0, mutexLocked) {
		// 这里记录了获取锁的操作,暂时不用管
		if race.Enabled {
			race.Acquire(unsafe.Pointer(m))
		}
		// 获取锁成功,直接返回
		return
	}
	// Slow path (outlined so that the fast path can be inlined)
	// 如果上面的获取过程没有成功,说明mutex已经被锁定,走slow
	m.lockSlow()
}
func (m *Mutex) lockSlow() {
	var waitStartTime int64
	starving := false
	// awoke用来跟踪当前的 goroutine 是否已经成功设置了 mutexWoken 标志,即是否已经通知 Unlock 不要唤醒其他被阻塞的 goroutine。
	awoke := false
	// 自旋次数
	iter := 0
	// 获取mutex的状态
	old := m.state
	for {
		// Don't spin in starvation mode, ownership is handed off to waiters
		// so we won't be able to acquire the mutex anyway.
		// 这里的操作很精妙,old&(mutexLocked|mutexStarving) == mutexLocked
		// 这个操作要求old&(101) == 001也就是old在mutexLocked位上必须为1,在mutexStarving位上必须为0,
		// 即,处在锁定但不饥饿状态,饥饿状态下不允许自旋。
		// runtime_canSpin(iter)是另一些条件,包括多核、压力不大并且在一定次数内可以自旋
		if old&(mutexLocked|mutexStarving) == mutexLocked && runtime_canSpin(iter) {
			// Active spinning makes sense.
			// Try to set mutexWoken flag to inform Unlock
			// to not wake other blocked goroutines.
			// !awoke没有成功设置mutexWoken
			// old&mutexWoken == 0,mutex锁没有设置woken位
			// old>>mutexWaiterShift != 0没有等待线程
			// atomic.CompareAndSwapInt32(&m.state, old, old|mutexWoken)成功设置woken位
			// awoke = true当前线程已成功设置mutexWoken位
			if !awoke && old&mutexWoken == 0 && old>>mutexWaiterShift != 0 &&
				atomic.CompareAndSwapInt32(&m.state, old, old|mutexWoken) {
				awoke = true
			}
			// 自旋
			runtime_doSpin()
			// 自旋次数
			iter++
			old = m.state
			continue
		}
		// 1. 锁仍被锁定,处于正常状态
		// 2. 锁仍被锁定,处于饥饿状态
		// 3. 锁被释放,处于正常状态
		// 4. 锁被释放,处于饥饿状态
		new := old
		// Don't try to acquire starving mutex, new arriving goroutines must queue.
		// 如果old状态不是饥饿状态,设置new为锁定状态
		if old&mutexStarving == 0 {
			new |= mutexLocked
		}
		// 锁定或饥饿
		if old&(mutexLocked|mutexStarving) != 0 {
			new += 1 << mutexWaiterShift
		}
		// The current goroutine switches mutex to starvation mode.
		// But if the mutex is currently unlocked, don't do the switch.
		// Unlock expects that starving mutex has waiters, which will not
		// be true in this case.
		if starving && old&mutexLocked != 0 {
			new |= mutexStarving
		}
		if awoke {
			// The goroutine has been woken from sleep,
			// so we need to reset the flag in either case.
			if new&mutexWoken == 0 {
				throw("sync: inconsistent mutex state")
			}
			new &^= mutexWoken
		}
		if atomic.CompareAndSwapInt32(&m.state, old, new) {
			if old&(mutexLocked|mutexStarving) == 0 {
				break // locked the mutex with CAS
			}
			// If we were already waiting before, queue at the front of the queue.
			queueLifo := waitStartTime != 0
			if waitStartTime == 0 {
				waitStartTime = runtime_nanotime()
			}
			runtime_SemacquireMutex(&m.sema, queueLifo, 1)
			starving = starving || runtime_nanotime()-waitStartTime > starvationThresholdNs
			old = m.state
			if old&mutexStarving != 0 {
				// If this goroutine was woken and mutex is in starvation mode,
				// ownership was handed off to us but mutex is in somewhat
				// inconsistent state: mutexLocked is not set and we are still
				// accounted as waiter. Fix that.
				if old&(mutexLocked|mutexWoken) != 0 || old>>mutexWaiterShift == 0 {
					throw("sync: inconsistent mutex state")
				}
				delta := int32(mutexLocked - 1<<mutexWaiterShift)
				if !starving || old>>mutexWaiterShift == 1 {
					// Exit starvation mode.
					// Critical to do it here and consider wait time.
					// Starvation mode is so inefficient, that two goroutines
					// can go lock-step infinitely once they switch mutex
					// to starvation mode.
					delta -= mutexStarving
				}
				atomic.AddInt32(&m.state, delta)
				break
			}
			awoke = true
			iter = 0
		} else {
			old = m.state
		}
	}

	if race.Enabled {
		race.Acquire(unsafe.Pointer(m))
	}
}
func sync_runtime_canSpin(i int) bool {
	if i >= active_spin || ncpu <= 1 || gomaxprocs <= int32(sched.npidle+sched.nmspinning)+1 {
		return false
	}
	if p := getg().m.p.ptr(); !runqempty(p) {
		return false
	}
	return true
}

标签:mutexLocked,old,mutexStarving,goroutine,Sync,Golang,state,mutex,Mutex
From: https://www.cnblogs.com/DCFV/p/18263128

相关文章

  • [Golang并发]Sync.map
    sync.Map的实现原理可概括为:通过read和dirty两个字段将读写分离,读取时会先查询read,不存在再查询dirty,写入时则只写入dirty,所以read相当于dirty的缓存。读取read并不需要加锁,而读或写dirty都需要加锁。misses字段统计read被穿透的次数,被穿透指需要读dirty的情......
  • golang如何使用指针灵活操作内存?unsafe包原理解析
    Hi你好,我是k哥。一个大厂工作6年,还在继续搬砖的后端程序员。我们都知道,C/C++提供了强大的万能指针void*,任何类型的指针都可以和万能指针相互转换。并且指针还可以进行加减等算数操作。那么在Golang中,是否有类似的功能呢?答案是有的,这就是我们今天要探讨的unsafe包。本文将深入探......
  • readhat8搭建SFTP双机高可用并配置Rsync数据实时同步
    环境准备:主机host-61-118:192.168.61.118host-61-119:192.168.61.119vip:192.168.61.220检测openssh版本,版本必须大于4.8.p1,否则需要升级openssh版本[root@host-61-118~]#ssh-VOpenSSH_7.4p1,OpenSSL1.0.2k-fips26Jan2017关闭防火墙systemctlstopfirew......
  • golang runtime.Caller 获取调用堆栈信息, Caller(1) 和 Caller(2) 的区别
     funcwhoCalledMe(){//获取调用堆栈信息_,fileName,lineNo,ok:=runtime.Caller(2)if!ok{fmt.Println("Failedtogetcallerinformation")return}fmt.Printf("Calledfrom:%s:%d\n",fileName,lineNo......
  • 关键属性描述ASYNC_REG
    关键属性描述属性信息本章提供有关Xilinx®Vivado®DesignSuite属性的信息。条目每个属性包含以下信息(如适用):•物业说明,包括其主要用途。•支持该特性的XilinxFPGA体系结构,包括UltraScale™架构设备,除非特别注明。•支持该物业的适用对象或设备资源。•可分配给属性......
  • golang openai GPT4o 示例代码
    packagemainimport( "context" "errors" "fmt" "io" "log" "os" "github.com/joho/godotenv" openai"github.com/sashabaranov/go-openai")funcmain(){ err:=godoten......
  • Async 注解底层异步线程
    一、前言开发中我们经常会用到异步方法调用,具体到代码层面,异步方法调用的实现方式有很多种,比如最原始的通过实现Runnable接口或者继承Thread类创建异步线程,然后启动异步线程;再如,可以直接用java.util.concurrent包提供的线程池相关API实现异步方法调用。如果说可以用一行......
  • synchronized 和 ReentrantLock (Lock)区别,优劣对比
    两种方法都是为了确保多线程环境中的线程安全,但它们使用了不同的同步机制:synchronized关键字和Lock接口。下面详细对比这两种方法的区别、优缺点以及适用场景。synchronized关键字publicsynchronizedvoidaddSession(HttpSessionsession){if(session!=null){......
  • Golang并发
    Sync.MutexMutex结构typeMutexstruct{ stateint32 semauint32}Sync.Mutex由两个字段构成,state用来表示当前互斥锁处于的状态,sema用于控制锁状态的信号量互斥锁state(32bit)主要记录了如下四种状态:waiter_num(29bit):记录了当前等待这个锁的goroutine数量starving(......
  • java synchronized 保护线程安全
    前言工作中自己实现了一个MySessionContext类,在实现addSession方法的时候,考虑到会有线程不安全问题,这里需要使用synchronized关键字来保护线程安全。理解synchronized关键字需要了解多线程和线程安全的基本概念。在多线程环境中,多个线程可以同时访问共享资源(例如内存中的变量......