首页 > 其他分享 >异步通知实验

异步通知实验

时间:2024-06-21 16:00:30浏览次数:13  
标签:异步 struct int 通知 应用程序 fasync 信号 实验 define

异步通知实验

Linux 应用程序可以通过阻塞或者非阻塞这两种方式来访问驱动设备,通过阻塞方式访问的话应用程序会处于休眠态,等待驱动设备可以使用,非阻塞方式的话会通过 poll 函数来不断的轮询.查看驱动设备文件是否可以使用。这两种方式都需要应用程序主动的去查询设备的使用情况,
“信号”为此应运而生,信号类似于我们硬件上使用的“中断”,只不过信号是软件层次上的。算是在软件层次上对中断的一种模拟,驱动可以通过主动向应用程序发送信号的方式来报告自己可以访问了,应用程序获取到信号以后就可以从驱动设备中读取或者写入数据了。整个过程就相当于应用程序收到了驱动发送过来了的一个中断,然后应用程序去响应这个中断,在整个处理过程中应用程序并没有去查询驱动设备是否可以访问,一切都是由驱动设备自己告诉给应用程序的。
异步通知的核心就是信号,在 arch/xtensa/include/uapi/asm/signal.h 文件中定义了 Linux 所支
持的所有信号,这些信号如下所示:

示例代码 53.1.1.1 Linux 信号
34 #define SIGHUP 1 /* 终端挂起或控制进程终止 */
35 #define SIGINT 2 /* 终端中断(Ctrl+C 组合键) */
36 #define SIGQUIT 3 /* 终端退出(Ctrl+\组合键) */
37 #define SIGILL 4 /* 非法指令 */
38 #define SIGTRAP 5 /* debug 使用,有断点指令产生 */
39 #define SIGABRT 6 /* 由 abort(3)发出的退出指令 */
40 #define SIGIOT 6 /* IOT 指令 */
41 #define SIGBUS 7 /* 总线错误 */
42 #define SIGFPE 8 /* 浮点运算错误 */
43 #define SIGKILL 9 /* 杀死、终止进程 */
44 #define SIGUSR1 10 /* 用户自定义信号 1 */
45 #define SIGSEGV 11 /* 段违例(无效的内存段) */
46 #define SIGUSR2 12 /* 用户自定义信号 2 */
47 #define SIGPIPE 13 /* 向非读管道写入数据 */
48 #define SIGALRM 14 /* 闹钟 */
49 #define SIGTERM 15 /* 软件终止 */
50 #define SIGSTKFLT 16 /* 栈异常 */
51 #define SIGCHLD 17 /* 子进程结束 */
52 #define SIGCONT 18 /* 进程继续 */
53 #define SIGSTOP 19 /* 停止进程的执行,只是暂停 */
54 #define SIGTSTP 20 /* 停止进程的运行(Ctrl+Z 组合键) */
55 #define SIGTTIN 21 /* 后台进程需要从终端读取数据 */
56 #define SIGTTOU 22 /* 后台进程需要向终端写数据 */
57 #define SIGURG 23 /* 有"紧急"数据 */
58 #define SIGXCPU 24 /* 超过 CPU 资源限制 */
59 #define SIGXFSZ 25 /* 文件大小超额 */
60 #define SIGVTALRM 26 /* 虚拟时钟信号 */
61 #define SIGPROF 27 /* 时钟信号描述 */
62 #define SIGWINCH 28 /* 窗口大小改变 */
63 #define SIGIO 29 /* 可以进行输入/输出操作 */
64 #define SIGPOLL SIGIO
65 /* #define SIGLOS 29 */
66 #define SIGPWR 30 /* 断点重启 */
67 #define SIGSYS 31 /* 非法的系统调用 */
68 #define SIGUNUSED 31 /* 未使用信号 */

在 Linux 和其他类 Unix 系统中,信号是一种进程间通信机制,用于通知进程某些事件的发生。大多数信号可以被进程捕获、忽略或默认处理,但有两个特殊的信号 —— SIGKILLSIGSTOP —— 不能被进程忽略或捕获。这两个信号的特殊性主要基于它们在系统中的作用和设计目的:

SIGKILL (信号 9)

  • 目的: 强制终止进程。
  • 特性: SIGKILL 信号用于立即终止进程,不给进程任何清理或保存数据的机会。系统管理员和用户可以使用这个信号来终止那些无响应或不能正常关闭的进程。
  • 为什么不能被忽略或捕获: 如果进程能够忽略或捕获 SIGKILL,它们可能会阻止自身被终止,从而导致僵尸进程或无法控制的进程。这会使系统管理员难以管理系统,尤其是在进程不响应其他终止尝试时。

SIGSTOP (信号 19)

  • 目的: 暂停进程的执行。
  • 特性: SIGSTOP 信号用于暂停(停止)进程的执行,直到收到 SIGCONT 信号。这对于调试和系统管理非常有用。
  • 为什么不能被忽略或捕获: 如果进程能够忽略或捕获 SIGSTOP,它们可能会继续执行,即使系统管理员或操作系统需要它们停止。这样的设计确保了系统管理员可以可靠地控制进程的执行,包括必要时暂停进程。
    使用中断的时候需要设置中断处理函数,同样的,如果要在应用程序中使用信号,那么就必须设置信号所使用的信号处理函数,在应用程序中使用 signal 函数来设置指定信号的处理函数, signal 函数原型如下所示:
sighandler_t signal(int signum, sighandler_t handler)
函数参数和返回值含义如下:
signum:要设置处理函数的信号。
handler: 信号的处理函数。
返回值: 设置成功的话返回信号的前一个处理函数,设置失败的话返回 SIG_ERR

信号处理函数原型如下所示:

typedef void (*sighandler_t)(int)

我们前面讲解的使用“ kill -9 PID”杀死指定进程的方法就是向指定的进程(PID)发送SIGKILL 这个信号。当按下键盘上的 CTRL+C 组合键以后会向当前正在占用终端的应用程序发出 SIGINT 信号, SIGINT 信号默认的动作是关闭当前应用程序。这里我们修改一下 SIGINT 信号的默认处理函数,当按下 CTRL+C 组合键以后先在终端上打印出“SIGINT signal!”这行字符串,然后再关闭当前应用程序。

驱动中的信号处理

1、 fasync_struct 结构体

首先我们需要在驱动程序中定义一个 fasync_struct 结构体指针变量, fasync_struct 结构体内容如下:

示例代码 53.1.2.1 fasync_struct 发结构体
struct fasync_struct {
	spinlock_t fa_lock;
	int magic;
	int fa_fd;
	struct fasync_struct *fa_next;
	struct file *fa_file;
	struct rcu_head fa_rcu;
};

一般将 fasync_struct 结构体指针变量定义到设备结构体中,比如在上一章节的 imx6uirq_dev结构体中添加一个 fasync_struct 结构体指针变量,结果如下所示:struct fasync_struct *async_queue; /* 异步相关结构体 */
如果要使用异步通知,需要在设备驱动中实现 file_operations 操作集中的 fasync 函数,此函数格式如下所示:

int (*fasync) (int fd, struct file *filp, int on)

fasync 函数里面一般通过调用 fasync_helper 函数来初始化前面定义的 fasync_struct 结构体指针, fasync_helper 函数原型如下:

int fasync_helper(int fd, struct file * filp, int on, struct fasync_struct **fapp)

fasync_helper 函数的前三个参数就是 fasync 函数的那三个参数,第四个参数就是要初始化的 fasync_struct 结构体指针变量。当应用程序通过“fcntl(fd, F_SETFL, flags | FASYNC)”改变fasync 标记的时候,驱动程序 file_operations 操作集中的 fasync 函数就会执行:
驱动程序中的 fasync 函数参考示例如下:

示例代码 53.1.2.3 驱动中 fasync 函数参考示例
1 struct xxx_dev {
2 ......
3 struct fasync_struct *async_queue; /* 异步相关结构体 */
4 };
5 6
static int xxx_fasync(int fd, struct file *filp, int on)
7 {
8 struct xxx_dev *dev = (xxx_dev)filp->private_data;
9
10 if (fasync_helper(fd, filp, on, &dev->async_queue) < 0)
11 return -EIO;
12 return 0;
13 }
14
15 static struct file_operations xxx_ops = {
16 ......
17 .fasync = xxx_fasync,
18 ......
19 };

在关闭驱动文件的时候需要在 file_operations 操作集中的 release 函数中释放 fasync_struct,fasync_struct 的释放函数同样为 fasync_helper, release 函数参数参考实例如下:

示例代码 53.1.2.4 释放 fasync_struct 参考示例
1 static int xxx_release(struct inode *inode, struct file *filp)
2 {
3 return xxx_fasync(-1, filp, 0); /* 删除异步通知 */
4 }

kill_fasync 函数

当设备可以访问的时候,驱动程序需要向应用程序发出信号,相当于产生“中断”。 kill_fasync
函数负责发送指定的信号, kill_fasync 函数原型如下所示:

void kill_fasync(struct fasync_struct **fp, int sig, int band)
函数参数和返回值含义如下:
fp:要操作的 fasync_struct。
sig: 要发送的信号。
band: 可读时设置为 POLL_IN,可写时设置为 POLL_OUT。
返回值: 无。

应用程序对异步通知的处理

应用程序对异步通知的处理:

1、注册信号处理函数

应用程序根据驱动程序所使用的信号来设置信号的处理函数,应用程序使用 signal 函数来
设置信号的处理函数。前面已经详细的讲过了,这里就不细讲了。

2、将本应用程序的进程号告诉给内核

使用 fcntl(fd, F_SETOWN, getpid())将本应用程序的进程号告诉给内核。

3、开启异步通知

使用如下两行程序开启异步通知:

flags = fcntl(fd, F_GETFL); /* 获取当前的进程状态 */
fcntl(fd, F_SETFL, flags | FASYNC); /* 开启当前进程异步通知功能 */

重点就是通过 fcntl 函数设置进程状态为 FASYNC,经过这一步,驱动程序中的 fasync 函数就会执行:

驱动程序编写

先要在设备结构体中添加

struct imx6uirq_dev{
	dev_t devid;			/* 设备号 	 */	
	struct cdev cdev;		/* cdev 	*/                 
	struct class *class;	/* 类 		*/
	struct device *device;	/* 设备 	 */
	int major;				/* 主设备号	  */
	int minor;				/* 次设备号   */
	struct device_node	*nd; /* 设备节点 */	
	atomic_t keyvalue;		/* 有效的按键键值 */
	atomic_t releasekey;	/* 标记是否完成一次完成的按键,包括按下和释放 */
	struct timer_list timer;/* 定义一个定时器*/
	struct irq_keydesc irqkeydesc[KEY_NUM];	/* 按键init述数组 */
	unsigned char curkeynum;				/* 当前init按键号 */
	wait_queue_head_t r_wait;				/* 读等待队列头 */
	struct fasync_struct *async_queue;		/* 异步相关结构体 */
};

接下来就是处理异步通知函数:

/*
 * @description     : fasync函数,用于处理异步通知
 * @param - fd		: 文件描述符
 * @param - filp    : 要打开的设备文件(文件描述符)
 * @param - on      : 模式
 * @return          : 负数表示函数执行失败
 */
static int imx6uirq_fasync(int fd, struct file *filp, int on)
{
	struct imx6uirq_dev *dev = (struct imx6uirq_dev *)filp->private_data;
	return fasync_helper(fd, filp, on, &dev->async_queue);
}
/*
 * @description     : release函数,应用程序调用close关闭驱动文件的时候会执行
 * @param - inode	: inode节点
 * @param - filp    : 要打开的设备文件(文件描述符)
 * @return          : 负数表示函数执行失败
 */
static int imx6uirq_release(struct inode *inode, struct file *filp)
{
	return imx6uirq_fasync(-1, filp, 0);
}

设备操作函数也要将这两个函数绑定:

/* 设备操作函数 */
static struct file_operations imx6uirq_fops = {
	.owner = THIS_MODULE,
	.open = imx6uirq_open,
	.read = imx6uirq_read,
	.poll = imx6uirq_poll,
	.fasync = imx6uirq_fasync,
	.release = imx6uirq_release,
};

接下来是测试APP函数:

#include "stdio.h"
#include "unistd.h"
#include "sys/types.h"
#include "sys/stat.h"
#include "fcntl.h"
#include "stdlib.h"
#include "string.h"
#include "poll.h"
#include "sys/select.h"
#include "sys/time.h"
#include "linux/ioctl.h"
#include "signal.h"
/***************************************************************
Copyright © ALIENTEK Co., Ltd. 1998-2029. All rights reserved.
文件名		: asyncnotiApp.c
作者	  	: 左忠凯
版本	   	: V1.0
描述	   	: 异步通知测试APP
其他	   	: 无
使用方法	:./asyncnotiApp /dev/asyncnoti 打开测试App
论坛 	   	: www.openedv.com
日志	   	: 初版V1.0 2019/8/13 左忠凯创建
***************************************************************/

static int fd = 0;	/* 文件描述符 */

/*
 * SIGIO信号处理函数
 * @param - signum 	: 信号值
 * @return 			: 无
 */
static void sigio_signal_func(int signum)
{
	int err = 0;
	unsigned int keyvalue = 0;

	err = read(fd, &keyvalue, sizeof(keyvalue));
	if(err < 0) {
		/* 读取错误 */
	} else {
		printf("sigio signal! key value=%d\r\n", keyvalue);
	}
}

/*
 * @description		: main主程序
 * @param - argc 	: argv数组元素个数
 * @param - argv 	: 具体参数
 * @return 			: 0 成功;其他 失败
 */
int main(int argc, char *argv[])
{
	int flags = 0;
	char *filename;

	if (argc != 2) {
		printf("Error Usage!\r\n");
		return -1;
	}

	filename = argv[1];
	fd = open(filename, O_RDWR);
	if (fd < 0) {
		printf("Can't open file %s\r\n", filename);
		return -1;
	}

	/* 设置信号SIGIO的处理函数 */
	signal(SIGIO, sigio_signal_func);
	
	fcntl(fd, F_SETOWN, getpid());		/* 设置当前进程接收SIGIO信号 	*/
	flags = fcntl(fd, F_GETFL);			/* 获取当前的进程状态 			*/
	fcntl(fd, F_SETFL, flags | FASYNC);	/* 设置进程启用异步通知功能 	*/	

	while(1) {
		sleep(2);
	}

	close(fd);
	return 0;
}

编译测试即可。

标签:异步,struct,int,通知,应用程序,fasync,信号,实验,define
From: https://www.cnblogs.com/bathwind/p/18260692

相关文章

  • JAVA SSE 服务端单向消息通知
    工作记录关于只需要服务端向web端单向通知的技术SSE的技术落地总结最近有个需求是关于消息的单向通知,原本考虑用websocket,但是技术经理认为太重,建议采用SSE.查阅相关技术后结合实际业务需要新建了一个工具类@Component@Slf4jpublicclassSSEUtils{privatefinalMap<......
  • 实验七
    task4#include<stdio.h>#include<ctype.h>intmain(){charfilename[100];FILE*file;intch;intcount=0;printf("请输入要统计字符数的文件名:");scanf("%s",filename);file=fopen(filename,"......
  • Web服务请求的几种异步处理方式
    我们先通过下面两张图来看下网络Web请求的异步处理和同步请求处理的区别:在上面两个流程图中有三个角色:客户端、Web容器和业务后端服务。两个流程中客户端对Web容器的请求,都是同步的。因为它们在请求客户端时都处于阻塞等待状态(涉及到用户态和内核态的切换),并没有进行异步处......
  • 实验7
    task4#include<stdio.h>intmain(){intcount=0;charc;FILE*fp;fp=fopen("data4.txt","r");if(fp==NULL){printf("failtoopenthefile\n");return1;}......
  • Async 注解底层异步线程
    一、前言开发中我们经常会用到异步方法调用,具体到代码层面,异步方法调用的实现方式有很多种,比如最原始的通过实现Runnable接口或者继承Thread类创建异步线程,然后启动异步线程;再如,可以直接用java.util.concurrent包提供的线程池相关API实现异步方法调用。如果说可以用一行......
  • 实验七
    TASK4#include<stdio.h>intmain(){ intcnt=0; charc; FILE*fp; fp=fopen("data4.txt","r"); if(fp==NULL){ printf("failtoopenthefile\n"); return1; } while((c=fgetc(fp))!=EOF){ if(c!='......
  • STM32同步通信与异步通信的区别及特点
    1.同步通信同步通信是指通信双方在通信过程中需要使用同步信号进行同步,以确保数据的正确传输。STM32的同步通信主要有两种方式:SPI和I2C。-SPI(SerialPeripheralInterface):SPI是一种高速的同步串行通信协议,它可以实现STM32与外设之间的高速数据传输。SPI通信需要使用4根线:时钟......
  • Linux 阻塞和非阻塞 IO 实验学习
    Linux阻塞和非阻塞IO实验学习IO指的是Input/Output,也就是输入/输出,是应用程序对驱动设备的输入/输出操作。当应用程序对设备驱动进行操作的时候,如果不能获取到设备资源,那么阻塞式IO就会将应用程序对应的线程挂起,直到设备资源可以获取为止。对于非阻塞IO,应用程序对应的线......
  • 阿里云Apsara Clouder专项技能认证——弹性计算Clouder认证:ECS快速入门(实验、考试操
    前言证书特点:免费!免费!免费!多一个证书有啥不好呢!!!证书名称:阿里ECS专项认证证书有效期:2年培训需求:免费培训,阿里提供课程发证机构:阿里巴巴考试时间:随时,线上直接考考试语言:中文考试费用:0考试难度:★★☆☆☆社会认可度:★★☆☆☆性价比:★★★★★(因为免费,性价比拉满)技术......
  • 实验7
    task4#include<stdio.h>intmain(){intcount=0;charch;FILE*fp;//以读的方式打开文本文件data1.txtfp=fopen("data4.txt","r");//如果打开文件失败,输出提示信息并返回if(fp==NULL){printf("fai......