我们先通过下面两张图来看下网络Web请求的异步处理和同步请求处理的区别:
在上面两个流程图中有三个角色:客户端、Web容器和 业务后端服务。
两个流程中客户端对Web容器的请求,都是同步的。因为它们在请求客户端时都处于阻塞等待状态(涉及到用户态和内核态的切换),并没有进行异步处理。
在Web容器部分,第一个流程采用同步请求,第二个流程采用异步回调的形式。
通过异步处理,可以先释放容器分配给请求的线程与相关资源,减轻系统负担,从而增加了Web服务器对客户端请求的吞吐量。但并发请求量较大时,也通常要配合通过负载均衡的方案来解决,而不只是异步。
1、基于Servlet方式实现异步请求
下面是一个基于Servlet方式的异步请求示例:
@GetMapping(value = "/user/get")
public void servletReq(HttpServletRequest request) {
AsyncContext asyncContext = request.startAsync();
// 设置监听器:可设置其开始、完成、异常、超时等事件的回调处理
asyncContext.addListener(new AsyncListener() {
@Override
public void onTimeout(AsyncEvent event) {
System.out.println("处理超时了...");
}
@Override
public void onStartAsync(AsyncEvent event) {
System.out.println("线程开始执行");
}
@Override
public void one rror(AsyncEvent event) {
System.out.println("执行过程中发生错误:" + event.getThrowable().getMessage());
}
@Override
public void onComplete(AsyncEvent event) {
System.out.println("执行完成,释放资源");
}
});
//设置超时时间
asyncContext.setTimeout(6000);
asyncContext.start(new Runnable() {
@Override
public void run() {
try {
Thread.sleep(5000);
System.out.println("内部线程:" + Thread.currentThread().getName());
asyncContext.getResponse().getWriter().println("async processing");
} catch (Exception e) {
System.out.println("异步处理发生异常:" + e.getMessage());
}
// 异步请求完成通知,整个请求完成
asyncContext.complete();
}
});
//此时request的线程连接已经释放了
System.out.println("主线程:" + Thread.currentThread().getName());
}
可以看出,上述代码先执行完了主线程,也就是程序的最后一行代码的日志打印,然后才是内部线程的执行。内部线程执行完成,AsyncContext 的onComplete方法会被调用。
Servlet 3.0之前,Servlet采用Thread-Per-Request的方式处理请求,即每一次Http请求都由一个线程从头到尾处理。当涉及到耗时操作时,性能问题便比较明显。
Servlet 3.0中提供了异步处理请求。可以先释放容器分配给请求的线程与相关资源,减轻系统负担,从而增加服务的吞吐量。
Servlet 3.0的异步是通过AsyncContext对象来完成的,它可以从当前线程传给另一个线程,并归还初始线程。新的线程处理完业务可以直接返回结果给客户端。
不仅可以通过AsyncContext获取Request和Response等信息,还可以设置异步处理超时时间。通常,超时时间(单位毫秒)是需要设置的,不然无限等下去不就与同步处理一样了。
通过AsyncContext的addListener还可以添加监听事件,用来处理异步线程的开始、完成、异常、超时等事件回调。
addListener方法的参数AsyncListener的源码如下:
public interface AsyncListener extends EventListener {
// 异步执行完毕时调用
void onComplete(AsyncEvent var1) throws IOException;
// 异步线程执行超时调用
void onTimeout(AsyncEvent var1) throws IOException;
// 异步线程出错时调用
void one rror(AsyncEvent var1) throws IOException;
// 异步线程开始时调用
void onStartAsync(AsyncEvent var1) throws IOException;
}
2、基于Callable方式实现异步请求
如果使用SpringMVC轻量级Web开发框架,可以基于JDK包提供的Callable实现,具体处理流程如下:
- Spring MVC开启副线程处理业务(将Callable提交到TaskExecutor);
- DispatcherServlet和所有的Filter退出Web容器的线程,但是response保持打开状态;
- Callable返回结果,SpringMVC将原始请求重新派发给容器(再重新请求一次/uri),恢复之前的处理;
- DispatcherServlet重新被调用,将结果返回给用户;
下面是一个基于Callable 方式的异步请求示例:
@GetMapping("/uri")
public Callable<String> test() {
System.out.println("主线程开始:" + Thread.currentThread().getName());
Callable<String> result = () -> {
System.out.println("副线程开始:" + Thread.currentThread().getName());
Thread.sleep(1000);
System.out.println("副线程返回:" + Thread.currentThread().getName());
return "success";
};
System.out.println("主线程返回:" + Thread.currentThread().getName());
return result;
}
Callable默认使用SimpleAsyncTaskExecutor类来执行,这个类非常简单而且没有重用线程, 每次都会开一个线程去执行。在实践中,需要使用AsyncTaskExecutor类来对线程进行配置。Callable所在的包是:java.util.concurrent;
这里通过实现WebMvcConfigurer接口来完成线程池的配置:
@Configuration
public class WebConfig implements WebMvcConfigurer {
@Resource
private ThreadPoolTaskExecutor myThreadPoolTaskExecutor;
/**
* 配置线程池
*/
@Bean(name = "asyncPoolTaskExecutor")
public ThreadPoolTaskExecutor getAsyncThreadPoolTaskExecutor() {
ThreadPoolTaskExecutor taskExecutor = new ThreadPoolTaskExecutor();
taskExecutor.setCorePoolSize(2);
taskExecutor.setMaxPoolSize(10);
taskExecutor.setQueueCapacity(25);
taskExecutor.setKeepAliveSeconds(200);
taskExecutor.setThreadNamePrefix("thread-pool-");
taskExecutor.setRejectedExecutionHandler(new ThreadPoolExecutor.CallerRunsPolicy());
taskExecutor.initialize();
return taskExecutor;
}
@Override
public void configureAsyncSupport(final AsyncSupportConfigurer configurer) {
// 处理callable超时
configurer.setDefaultTimeout(60 * 1000);
configurer.setTaskExecutor(myThreadPoolTaskExecutor);
configurer.registerCallableInterceptors(timeoutCallableProcessingInterceptor());
}
@Bean
public TimeoutCallableProcessingInterceptor timeoutCallableProcessingInterceptor() {
return new TimeoutCallableProcessingInterceptor();
}
}
3、基于WebAsyncTask方式实现异步请求
Spring提供的WebAsyncTask是对Callable的包装,提供了更强大的功能,比如:业务处理超时回调、错误回调、完成回调等。
下面是一个基于WebAsyncTask 方式的异步请求示例:
@GetMapping("/webAsyncTask")
public WebAsyncTask<String> webAsyncTask() {
log.info("外部线程:" + Thread.currentThread().getName());
WebAsyncTask<String> result = new WebAsyncTask<>(60 * 1000L, new Callable<String>() {
@Override
public String call() {
log.info("内部线程:" + Thread.currentThread().getName());
return "success";
}
});
result.onTimeout(new Callable<String>() {
@Override
public String call() {
log.info("timeout callback");
return "timeout callback";
}
});
result.onCompletion(new Runnable() {
@Override
public void run() {
log.info("finish callback");
}
});
return result;
}
WebAsyncTask本质上是对Callable的封装,提供了一些事件回调的处理。WebAsyncTask所在的包:org.springframework.web.context.request.async;
4、基于DeferredResult方式实现异步请求
DeferredResult 使用方式与Callable类似,但在返回结果时不一样,它返回的时实际结果可能没有生成,实际的结果可能会在另外的线程里面设置到DeferredResult中去。
DeferredResult 的这个特性对实现服务端推技术、订单过期时间处理、长轮询、模拟MQ的功能等高级应用非常重要。
DeferredResult这个类也是在spring-web包中:org.springframework.web.context.request.async。DeferredResult的调用并不一定在Spring MVC当中,它可以是别的线程。官方的解释也是如此:
In this case the return value will also be produced from a separate thread. However, that thread is not known to Spring MVC. For example the result may be produced in response to some external event such as a JMS message, a scheduled task, etc.
也就是说,DeferredResult返回的结果也可能是由MQ、定时任务或其他线程触发。
下面是一个基于DeferredResult 方式的异步请求示例:
@Controller
@RequestMapping("/async/controller")
public class AsyncHelloController {
private List<DeferredResult<String>> deferredResultList = new ArrayList<>();
@ResponseBody
@GetMapping("/hello")
public DeferredResult<String> helloGet() throws Exception {
DeferredResult<String> deferredResult = new DeferredResult<>();
//先存起来,等待触发
deferredResultList.add(deferredResult);
return deferredResult;
}
@ResponseBody
@GetMapping("/setHelloToAll")
public void helloSet() throws Exception {
// 让所有hold住的请求给与响应
deferredResultList.forEach(d -> d.setResult("say hello to all"));
}
}
第一个请求/hello,会先将deferredResult存起来,前端页面是一直等待(转圈)状态。直到发第二个请求:setHelloToAll,所有的相关页面才会有响应。
整个执行流程如下:
- Controller返回一个DeferredResult,把它保存到内存里或者List里面(供后续访问);
- Spring MVC调用request.startAsync(),开启异步处理;与此同时将DispatcherServlet里的拦截器、Filter等等都马上退出主线程,但是response仍然保持打开的状态;
- 应用通过另外一个线程(可能是MQ消息、定时任务等)给DeferredResult#setResult值。然后SpringMVC会把这个请求再次派发给servlet容器;
- DispatcherServlet再次被调用,然后处理后续的标准流程;
通过上述流程可以发现:利用DeferredResult可实现一些长连接的功能,比如当某个操作是异步时,可以先保存对应的DeferredResult对象,当异步通知回来时,再找到这个DeferredResult对象,在setResult处理结果即可。从而提高性能。
更多优质技术分享,请关注下面
标签:Web,请求,异步,几种,Callable,线程,DeferredResult,public From: https://blog.csdn.net/mzhlqy/article/details/139854669