首页 > 其他分享 >6.20-合并二叉树

6.20-合并二叉树

时间:2024-06-20 22:09:55浏览次数:12  
标签:right val 合并 二叉树 6.20 NULL root 节点 left

617.合并二叉树

题意描述:

给你两棵二叉树: root1root2

想象一下,当你将其中一棵覆盖到另一棵之上时,两棵树上的一些节点将会重叠(而另一些不会)。你需要将这两棵树合并成一棵新二叉树。合并的规则是:如果两个节点重叠,那么将这两个节点的值相加作为合并后节点的新值;否则,不为 null 的节点将直接作为新二叉树的节点。

返回合并后的二叉树。

注意: 合并过程必须从两个树的根节点开始。

示例 1:

img

输入:root1 = [1,3,2,5], root2 = [2,1,3,null,4,null,7]
输出:[3,4,5,5,4,null,7]

示例 2:

输入:root1 = [1], root2 = [1,2]
输出:[2,2]

提示:

  • 两棵树中的节点数目在范围 [0, 2000]
  • -104 <= Node.val <= 104

思路:

相信这道题目很多同学疑惑的点是如何同时遍历两个二叉树呢?

其实和遍历一个树逻辑是一样的,只不过传入两个树的节点,同时操作。

递归

二叉树使用递归,就要想使用前中后哪种遍历方式?

本题使用哪种遍历都是可以的!

我们下面以前序遍历为例。

动画如下:

617.合并二叉树

那么我们来按照递归三部曲来解决:

  1. 确定递归函数的参数和返回值:

首先要合入两个二叉树,那么参数至少是要传入两个二叉树的根节点,返回值就是合并之后二叉树的根节点。

代码如下:

TreeNode* mergeTrees(TreeNode* t1, TreeNode* t2) {
  1. 确定终止条件:

因为是传入了两个树,那么就有两个树遍历的节点t1 t2,如果t1 == NULL 了,两个树合并就应该是 t2 了(如果t2也为NULL也无所谓,合并之后就是NULL)。

反过来如果t2 == NULL,那么两个数合并就是t1(如果t1也为NULL也无所谓,合并之后就是NULL)。

代码如下:

if (t1 == NULL) return t2; // 如果t1为空,合并之后就应该是t2
if (t2 == NULL) return t1; // 如果t2为空,合并之后就应该是t1
  1. 确定单层递归的逻辑:

单层递归的逻辑就比较好写了,这里我们重复利用一下t1这个树,t1就是合并之后树的根节点(就是修改了原来树的结构)。

那么单层递归中,就要把两棵树的元素加到一起。

t1->val += t2->val;

接下来t1 的左子树是:合并 t1左子树 t2左子树之后的左子树。

t1 的右子树:是 合并 t1右子树 t2右子树之后的右子树。

最终t1就是合并之后的根节点。

代码如下:

t1->left = mergeTrees(t1->left, t2->left);
t1->right = mergeTrees(t1->right, t2->right);
return t1;

此时前序遍历,完整代码就写出来了,如下:

class Solution {
public:
    TreeNode* mergeTrees(TreeNode* t1, TreeNode* t2) {
        if (t1 == NULL) return t2; // 如果t1为空,合并之后就应该是t2
        if (t2 == NULL) return t1; // 如果t2为空,合并之后就应该是t1
        // 修改了t1的数值和结构
        t1->val += t2->val;                             // 中
        t1->left = mergeTrees(t1->left, t2->left);      // 左
        t1->right = mergeTrees(t1->right, t2->right);   // 右
        return t1;
    }
};

那么中序遍历也是可以的,代码如下:

class Solution {
public:
    TreeNode* mergeTrees(TreeNode* t1, TreeNode* t2) {
        if (t1 == NULL) return t2; // 如果t1为空,合并之后就应该是t2
        if (t2 == NULL) return t1; // 如果t2为空,合并之后就应该是t1
        // 修改了t1的数值和结构
        t1->left = mergeTrees(t1->left, t2->left);      // 左
        t1->val += t2->val;                             // 中
        t1->right = mergeTrees(t1->right, t2->right);   // 右
        return t1;
    }
};

后序遍历依然可以,代码如下:

class Solution {
public:
    TreeNode* mergeTrees(TreeNode* t1, TreeNode* t2) {
        if (t1 == NULL) return t2; // 如果t1为空,合并之后就应该是t2
        if (t2 == NULL) return t1; // 如果t2为空,合并之后就应该是t1
        // 修改了t1的数值和结构
        t1->left = mergeTrees(t1->left, t2->left);      // 左
        t1->right = mergeTrees(t1->right, t2->right);   // 右
        t1->val += t2->val;                             // 中
        return t1;
    }
};

但是前序遍历是最好理解的,我建议大家用前序遍历来做就OK。

如上的方法修改了t1的结构,当然也可以不修改t1t2的结构,重新定义一个树。

不修改输入树的结构,前序遍历,代码如下:

class Solution {
public:
    TreeNode* mergeTrees(TreeNode* t1, TreeNode* t2) {
        if (t1 == NULL) return t2;
        if (t2 == NULL) return t1;
        // 重新定义新的节点,不修改原有两个树的结构
        TreeNode* root = new TreeNode(0);
        root->val = t1->val + t2->val;
        root->left = mergeTrees(t1->left, t2->left);
        root->right = mergeTrees(t1->right, t2->right);
        return root;
    }
};

迭代法

使用迭代法,如何同时处理两棵树呢?

思路我们在二叉树:我对称么? (opens new window)中的迭代法已经讲过一次了,求二叉树对称的时候就是把两个树的节点同时加入队列进行比较。

本题我们也使用队列,模拟的层序遍历,代码如下:

class Solution {
public:
    TreeNode* mergeTrees(TreeNode* t1, TreeNode* t2) {
        if (t1 == NULL) return t2;
        if (t2 == NULL) return t1;
        queue<TreeNode*> que;
        que.push(t1);
        que.push(t2);
        while(!que.empty()) {
            TreeNode* node1 = que.front(); que.pop();
            TreeNode* node2 = que.front(); que.pop();
            // 此时两个节点一定不为空,val相加
            node1->val += node2->val;

            // 如果两棵树左节点都不为空,加入队列
            if (node1->left != NULL && node2->left != NULL) {
                que.push(node1->left);
                que.push(node2->left);
            }
            // 如果两棵树右节点都不为空,加入队列
            if (node1->right != NULL && node2->right != NULL) {
                que.push(node1->right);
                que.push(node2->right);
            }

            // 当t1的左节点 为空 t2左节点不为空,就赋值过去
            if (node1->left == NULL && node2->left != NULL) {
                node1->left = node2->left;
            }
            // 当t1的右节点 为空 t2右节点不为空,就赋值过去
            if (node1->right == NULL && node2->right != NULL) {
                node1->right = node2->right;
            }
        }
      //因为最后返回t1,所以t1非空,t2空这种情况不用管,直接返回t1即可
        return t1;
    }
};

拓展

当然也可以秀一波指针的操作,这是我写的野路子,大家就随便看看就行了,以防带跑偏了。

如下代码中,想要更改二叉树的值,应该传入指向指针的指针。

代码如下:(前序遍历)

class Solution {
public:
    void process(TreeNode** t1, TreeNode** t2) {
        if ((*t1) == NULL && (*t2) == NULL) return;
        if ((*t1) != NULL && (*t2) != NULL) {
            (*t1)->val += (*t2)->val;
        }
        if ((*t1) == NULL && (*t2) != NULL) {
            *t1 = *t2;
            return;
        }
        if ((*t1) != NULL && (*t2) == NULL) {
            return;
        }
        process(&((*t1)->left), &((*t2)->left));
        process(&((*t1)->right), &((*t2)->right));
    }
    TreeNode* mergeTrees(TreeNode* t1, TreeNode* t2) {
        process(&t1, &t2);
        return t1;
    }
};

总结

合并二叉树,也是二叉树操作的经典题目,如果没有接触过的话,其实并不简单,因为我们习惯了操作一个二叉树,一起操作两个二叉树,还会有点懵懵的。

这不是我们第一次操作两棵二叉树了,在二叉树:我对称么? (opens new window)中也一起操作了两棵二叉树。

迭代法中,一般一起操作两个树都是使用队列模拟类似层序遍历,同时处理两个树的节点,这种方式最好理解,如果用模拟递归的思路的话,要复杂一些。

最后拓展中,我给了一个操作指针的野路子,大家随便看看就行了,如果学习C++的话,可以再去研究研究。


700.二叉搜索树中的搜索

题意描述:

给定二叉搜索树(BST)的根节点 root 和一个整数值 val

你需要在 BST 中找到节点值等于 val 的节点。 返回以该节点为根的子树。 如果节点不存在,则返回 null

示例 1:

img

输入:root = [4,2,7,1,3], val = 2
输出:[2,1,3]

示例 2:

img

输入:root = [4,2,7,1,3], val = 5
输出:[]

提示:

  • 树中节点数在 [1, 5000] 范围内
  • 1 <= Node.val <= 107
  • root 是二叉搜索树
  • 1 <= val <= 107

思路:

二叉搜索树是一个有序树:

  • 若它的左子树不空,则左子树上所有结点的值均小于它的根结点的值;
  • 若它的右子树不空,则右子树上所有结点的值均大于它的根结点的值;
  • 它的左、右子树也分别为二叉搜索树

这就决定了,二叉搜索树,递归遍历和迭代遍历和普通二叉树都不一样。

本题,其实就是在二叉搜索树中搜索一个节点。那么我们来看看应该如何遍历。

递归法

  1. 确定递归函数的参数和返回值

递归函数的参数传入的就是根节点和要搜索的数值,返回的就是以这个搜索数值所在的节点。

代码如下:

TreeNode* searchBST(TreeNode* root, int val)
  1. 确定终止条件

如果root为空,或者找到这个数值了,就返回root节点。

if (root == NULL || root->val == val) return root;
  1. 确定单层递归的逻辑

看看二叉搜索树的单层递归逻辑有何不同。

因为二叉搜索树的节点是有序的,所以可以有方向的去搜索

如果root->val > val,搜索左子树,如果root->val < val,就搜索右子树,最后如果都没有搜索到,就返回NULL。

代码如下:

TreeNode* result = NULL;
if (root->val > val) result = searchBST(root->left, val);
if (root->val < val) result = searchBST(root->right, val);
return result;

很多录友写递归函数的时候 习惯直接写 searchBST(root->left, val),却忘了 递归函数还有返回值。

递归函数的返回值是什么? 是 左子树如果搜索到了val,要将该节点返回如果不用一个变量将其接住,那么返回值不就没了。

所以要 result = searchBST(root->left, val)

整体代码如下:

class Solution {
public:
    TreeNode* searchBST(TreeNode* root, int val) {
        if (root == NULL || root->val == val) return root;
        TreeNode* result = NULL;
        if (root->val > val) result = searchBST(root->left, val);
        if (root->val < val) result = searchBST(root->right, val);
        return result;
    }
};

或者我们也可以这么写

class Solution {
public:
    TreeNode* searchBST(TreeNode* root, int val) {
        if (root == NULL || root->val == val) return root;
        if (root->val > val) return searchBST(root->left, val);
        if (root->val < val) return searchBST(root->right, val);
        return NULL;
    }
};

迭代法

一提到二叉树遍历的迭代法,可能立刻想起使用来模拟深度遍历,使用队列来模拟广度遍历。

对于二叉搜索树可就不一样了,因为二叉搜索树的特殊性,也就是节点的有序性,可以不使用辅助栈或者队列就可以写出迭代法。

对于一般二叉树,递归过程中还有回溯的过程,例如走一个左方向的分支走到头了,那么要调头,在走右分支。

对于二叉搜索树,不需要回溯的过程,因为节点的有序性就帮我们确定了搜索的方向。

例如要搜索元素为3的节点,我们不需要搜索其他节点,也不需要做回溯,查找的路径已经规划好了。

中间节点如果大于3就向左走,如果小于3就向右走,如图:

二叉搜索树

所以迭代法代码如下:

class Solution {
public:
    TreeNode* searchBST(TreeNode* root, int val) {
        while (root != NULL) {
            if (root->val > val) root = root->left;
            else if (root->val < val) root = root->right;
            else return root;
        }
        return NULL;
    }
};

第一次看到了如此简单的迭代法,是不是感动的痛哭流涕,哭一会~

总结

本篇我们介绍了二叉搜索树的遍历方式,因为二叉搜索树的有序性,遍历的时候要比普通二叉树简单很多。

但是一些同学很容易忽略二叉搜索树的特性,所以写出遍历的代码就未必真的简单了。

所以针对二叉搜索树的题目,一样要利用其特性。

文中我依然给出递归和迭代两种方式,可以看出写法都非常简单,就是利用了二叉搜索树有序的特点。


98.验证二叉搜索树

题意描述:

给你一个二叉树的根节点 root ,判断其是否是一个有效的二叉搜索树。

有效 二叉搜索树定义如下:

  • 节点的左子树只包含小于 当前节点的数。
  • 节点的右子树只包含 大于 当前节点的数。
  • 所有左子树和右子树自身必须也是二叉搜索树。

示例 1:

img

输入:root = [2,1,3]
输出:true

示例 2:

img

输入:root = [5,1,4,null,null,3,6]
输出:false
解释:根节点的值是 5 ,但是右子节点的值是 4 。

提示:

  • 树中节点数目范围在[1, 104]
  • -231 <= Node.val <= 231 - 1

思路:

要知道中序遍历下,输出的二叉搜索树节点的数值是有序序列。

有了这个特性,验证二叉搜索树,就相当于变成了判断一个序列是不是递增的了。

递归法

可以递归中序遍历将二叉搜索树转变成一个数组,代码如下:

vector<int> vec;
void traversal(TreeNode* root) {
    if (root == NULL) return;
    traversal(root->left);
    vec.push_back(root->val); // 将二叉搜索树转换为有序数组
    traversal(root->right);
}

然后只要比较一下,这个数组是否是有序的,注意二叉搜索树中不能有重复元素

traversal(root);
for (int i = 1; i < vec.size(); i++) {
    // 注意要小于等于,搜索树里不能有相同元素
    if (vec[i] <= vec[i - 1]) return false;
}
return true;

整体代码如下:

class Solution {
private:
    vector<int> vec;
    void traversal(TreeNode* root) {
        if (root == NULL) return;
        traversal(root->left);
        vec.push_back(root->val); // 将二叉搜索树转换为有序数组
        traversal(root->right);
    }
public:
    bool isValidBST(TreeNode* root) {
        vec.clear(); // 不加这句在leetcode上也可以过,但最好加上
        traversal(root);
        for (int i = 1; i < vec.size(); i++) {
            // 注意要小于等于,搜索树里不能有相同元素
            if (vec[i] <= vec[i - 1]) return false;
        }
        return true;
    }
};

以上代码中,我们把二叉树转变为数组来判断,是最直观的,但其实不用转变成数组,可以在递归遍历的过程中直接判断是否有序。

这道题目比较容易陷入两个陷阱:

  • 陷阱1

不能单纯的比较左节点小于中间节点,右节点大于中间节点就完事了

写出了类似这样的代码:

if (root->val > root->left->val && root->val < root->right->val) {
    return true;
} else {
    return false;
}

我们要比较的是 左子树所有节点小于中间节点,右子树所有节点大于中间节点。所以以上代码的判断逻辑是错误的。

例如: [10,5,15,null,null,6,20] 这个case:

二叉搜索树

节点10大于左节点5,小于右节点15,但右子树里出现了一个6 这就不符合了!

  • 陷阱2

样例中最小节点 可能是int的最小值(- 2 ^ 31),如果这样使用最小的int来比较也是不行的。

此时可以初始化比较元素为longlong的最小值。

问题可以进一步演进:如果样例中根节点的val 可能是longlong的最小值 又要怎么办呢?

了解这些陷阱之后我们来看一下代码应该怎么写:

递归三部曲:

  1. 确定递归函数,返回值以及参数

要定义一个longlong的全局变量,用来比较遍历的节点是否有序,因为后台测试数据中有int最小值,所以定义为longlong的类型,初始化为longlong最小值。

注意递归函数要有bool类型的返回值, 我们在二叉树:递归函数究竟什么时候需要返回值,什么时候不要返回值? (opens new window)中讲了,只有寻找某一条边(或者一个节点)的时候,递归函数会有bool类型的返回值。

其实本题是同样的道理,我们在寻找一个不符合条件的节点,如果没有找到这个节点就遍历了整个树,如果找到不符合的节点了,立刻返回。

代码如下:

long long maxVal = LONG_MIN; // 因为后台测试数据中有int最小值
bool isValidBST(TreeNode* root)
  1. 确定终止条件

如果是空节点 是不是二叉搜索树呢?

是的,二叉搜索树也可以为空!

代码如下:

if (root == NULL) return true;
  1. 确定单层递归的逻辑

中序遍历,一直更新maxVal,一旦发现maxVal >= root->val,就返回false,注意元素相同时候也要返回false

代码如下:

bool left = isValidBST(root->left);         // 左

// 中序遍历,验证遍历的元素是不是从小到大
if (maxVal < root->val) maxVal = root->val; // 中
else return false;

bool right = isValidBST(root->right);       // 右
return left && right;

整体代码如下:

class Solution {
public:
    long long maxVal = LONG_MIN; // 因为后台测试数据中有int最小值
    bool isValidBST(TreeNode* root) {
        if (root == NULL) return true;

        bool left = isValidBST(root->left);
        // 中序遍历,验证遍历的元素是不是从小到大
        if (maxVal < root->val) maxVal = root->val;
        else return false;
        bool right = isValidBST(root->right);

        return left && right;
    }
};

以上代码是因为后台数据有int最小值测试用例,所以都把maxVal改成了longlong最小值。

如果测试数据中有 longlong的最小值,怎么办?

不可能在初始化一个更小的值了吧。 建议避免 初始化最小值,如下方法取到最左面节点的数值来比较。

代码如下:

class Solution {
public:
    TreeNode* pre = NULL; // 用来记录前一个节点
    bool isValidBST(TreeNode* root) {
        if (root == NULL) return true;
        bool left = isValidBST(root->left);

        if (pre != NULL && pre->val >= root->val) return false;
        pre = root; // 记录前一个节点

        bool right = isValidBST(root->right);
        return left && right;
    }
};

最后这份代码看上去整洁一些,思路也清晰。

迭代法

迭代法中序遍历稍加改动就可以了,代码如下:

class Solution {
public:
    bool isValidBST(TreeNode* root) {
        stack<TreeNode*> st;
        TreeNode* cur = root;
        TreeNode* pre = NULL; // 记录前一个节点
        while (cur != NULL || !st.empty()) {
            if (cur != NULL) {
                st.push(cur);
                cur = cur->left;                // 左
            } else {
                cur = st.top();                 // 中
                st.pop();
                if (pre != NULL && cur->val <= pre->val)
                return false;
                pre = cur; //保存前一个访问的结点

                cur = cur->right;               // 右
            }
        }
        return true;
    }
};

这题不能用queue作为容器,因为递归搜索的pushpop是对上一层处理,que不行

总结

这道题目是一个简单题,但对于没接触过的同学还是有难度的。

所以初学者刚开始学习算法的时候,看到简单题目没有思路很正常,千万别怀疑自己智商,学习过程都是这样的,大家智商都差不多。

只要把基本类型的题目都做过,总结过之后,思路自然就开阔了,加油

标签:right,val,合并,二叉树,6.20,NULL,root,节点,left
From: https://www.cnblogs.com/7dragonpig/p/18259587

相关文章

  • Day56 代码随想录打卡|二叉树篇---删除二叉搜索树中的节点
    题目(leecodeT450):给定一个二叉搜索树的根节点 root 和一个值 key,删除二叉搜索树中的 key 对应的节点,并保证二叉搜索树的性质不变。返回二叉搜索树(有可能被更新)的根节点的引用。一般来说,删除节点可分为两个步骤:首先找到需要删除的节点;如果找到了,删除它。方法:二叉搜索......
  • chatGPT帮我优化代码-2024.06.20
    改成面向对象源代码defret_roi_value_dict(txt_path):output=[]line_number=0withopen(txt_path,'r')asfile:forlineinfile:line_number+=1#使用正则表达式提取case_name和pixel_valuematch=......
  • 【数据结构与算法】二叉树的性质 详解
    在二叉树的第i层上至多有多少个结点。在二叉树的第i层上至多有2i−1......
  • 【数据结构与算法】树,二叉树 详解
    给出树的不同的几种表示形式。邻接矩阵:这是一种二维数组,其中的元素表示两个节点之间是否存在边。这种表示形式适用于稠密图,但对于稀疏图可能会浪费很多空间。邻接表:这是一种数组和链表的组合结构。数组的每个元素都是一个链表,链表中的元素表示与该节点相连的其他节点。这种......
  • Leedcode【222】. 完全二叉树的节点个数——Java解法(递归)
    Problem: 222.完全二叉树的节点个数题目思路解题方法复杂度Code效果题目给你一棵完全二叉树的根节点root,求出该树的节点个数。完全二叉树的定义如下:在完全二叉树中,除了最底层节点可能没填满外,其余每层节点数都达到最大值,并且最下面一层的节点都集中在该层最左边的......
  • 数组合并去重排序
     constarr1=[54,67,89,1,4,3,5,0,0,3]    constarr2=[5,5,6,7,8,3,2,5,7,453,54]    functionpopSort(arr){      for(leti=0;i<arr.length;i++){        for(letj=0;j<arr.leng......
  • 代码随想录刷题记录(11)| 二叉树(二叉树理论基础,二叉树的递归遍历,迭代遍历,统一迭代,层序遍
    目录(一)二叉树理论基础1.种类2.存储方式3.遍历方式4.二叉树的定义 (二)二叉树的递归遍历1.思路2.递归遍历(1)前序遍历(2)中序遍历(3)后序遍历(三)二叉树的迭代遍历1.思路2.迭代遍历 (1)前序(2)中序(3)后序(四)二叉树的统一迭代(五)二叉树的层序遍历1.思路2.层序遍......
  • Pytorch:合并分割
    1前言记录一下Pytorch中对tensor合并分割的方法2合并Pytorch中对tensor合并的方法有两种:torch.cat()torch.stack()其中,torch.cat()直接将两个变量进行拼接,不会产生新的维度而torch.stack()则会将tensor堆叠,产生新的维度tensor1=torch.randn(2,3)tensor2=torch.rand......
  • 考研系列-数据结构第五章:树与二叉树(上)
    目录写在前面:一、树的基本知识点1.树的基本概念2.树的常见术语(1)结点之间的关系描述(2)结点、树的属性描述(3)有序树和无序树对比(4)树和森林对比(5)总结3.树常考性质(1)结点数=总度数+1(2)度为m的树VSm叉树(3)树的层数(高度)和结点个数(4)求树最多/最少结点......
  • java freemarker实现单元格动态合并
    在Java项目中,使用FreeMarker模板引擎来动态生成Excel文件,并实现单元格的动态合并(特别是行合并)。可以通过以下步骤来完成:1.准备数据模型        需要准备一个合适的数据模型,该模型应能表示出哪些单元格需要合并。        例如,如果想要根据某一列的值来决定......