首页 > 其他分享 >最终成功果展示

最终成功果展示

时间:2024-06-17 21:22:27浏览次数:24  
标签:展示 最终 pose cv2 成功 77 mp image 255

最终成功果展示

import time
from collections import deque
import requests
import cv2
import numpy as np
import mediapipe as mp

from stgcn.stgcn import STGCN
from PIL import Image, ImageDraw, ImageFont
mp_drawing = mp.solutions.drawing_utils
mp_drawing_styles = mp.solutions.drawing_styles
mp_pose = mp.solutions.pose
KEY_JOINTS = [
mp_pose.PoseLandmark.NOSE,
mp_pose.PoseLandmark.LEFT_SHOULDER,
mp_pose.PoseLandmark.RIGHT_SHOULDER,
mp_pose.PoseLandmark.LEFT_ELBOW,
mp_pose.PoseLandmark.RIGHT_ELBOW,
mp_pose.PoseLandmark.LEFT_WRIST,
mp_pose.PoseLandmark.RIGHT_WRIST,
mp_pose.PoseLandmark.LEFT_HIP,
mp_pose.PoseLandmark.RIGHT_HIP,
mp_pose.PoseLandmark.LEFT_KNEE,
mp_pose.PoseLandmark.RIGHT_KNEE,
mp_pose.PoseLandmark.LEFT_ANKLE,
mp_pose.PoseLandmark.RIGHT_ANKLE
]

POSE_CONNECTIONS = [(6, 4), (4, 2), (2, 13), (13, 1), (5, 3), (3, 1), (12, 10),
(10, 8), (8, 2), (11, 9), (9, 7), (7, 1), (13, 0)]

POINT_COLORS = [(0, 255, 255), (0, 191, 255), (0, 255, 102), (0, 77, 255), (0, 255, 0), # Nose, LEye, REye, LEar, REar
(77, 255, 255), (77, 255, 204), (77, 204, 255), (191, 255, 77), (77, 191, 255), (191, 255, 77), # LShoulder, RShoulder, LElbow, RElbow, LWrist, RWrist
(204, 77, 255), (77, 255, 204), (191, 77, 255), (77, 255, 191), (127, 77, 255), (77, 255, 127), (0, 255, 255)] # LHip, RHip, LKnee, Rknee, LAnkle, RAnkle, Neck

LINE_COLORS = [(0, 215, 255), (0, 255, 204), (0, 134, 255), (0, 255, 50), (77, 255, 222),
(77, 196, 255), (77, 135, 255), (191, 255, 77), (77, 255, 77), (77, 222, 255),
(255, 156, 127), (0, 127, 255), (255, 127, 77), (0, 77, 255), (255, 77, 36)]

ACTION_MODEL_MAX_FRAMES = 30
class FallDetection:
def init(self):
self.isOk = True
self.action_model = STGCN(weight_file='./weights/tsstg-model.pth', device='cpu')
self.joints_list = deque(maxlen=ACTION_MODEL_MAX_FRAMES)

def draw_skeleton(self, frame, pts):
l_pair = POSE_CONNECTIONS
p_color = POINT_COLORS

line_color = LINE_COLORS

part_line = {}
pts = np.concatenate((pts, np.expand_dims((pts[1, :] + pts[2, :]) / 2, 0)), axis=0)
for n in range(pts.shape[0]):
    if pts[n, 2] <= 0.05:
        continue
    cor_x, cor_y = int(pts[n, 0]), int(pts[n, 1])
    part_line[n] = (cor_x, cor_y)
    cv2.circle(frame, (cor_x, cor_y), 3, p_color[n], -1)
    # cv2.putText(frame, str(n), (cor_x+10, cor_y+10), cv2.FONT_HERSHEY_PLAIN, 1, (0, 0, 255), 1)

for i, (start_p, end_p) in enumerate(l_pair):
    if start_p in part_line and end_p in part_line:
        start_xy = part_line[start_p]
        end_xy = part_line[end_p]
        cv2.line(frame, start_xy, end_xy, line_color[i], int(1*(pts[start_p, 2] + pts[end_p, 2]) + 3))
return frame

def cv2_add_chinese_text(self, img, text, position, textColor=(0, 255, 0), textSize=30):
if (isinstance(img, np.ndarray)): # 判断是否OpenCV图片类型
img = Image.fromarray(cv2.cvtColor(img, cv2.COLOR_BGR2RGB))
# 创建一个可以在给定图像上绘图的对象
draw = ImageDraw.Draw(img)
# 字体的格式
fontStyle = ImageFont.truetype(
"./fonts/MSYH.ttc", textSize, encoding="utf-8")
# 绘制文本
draw.text(position, text, textColor, font=fontStyle)
# 转换回OpenCV格式
return cv2.cvtColor(np.asarray(img), cv2.COLOR_RGB2BGR)

def detect(self):
# Initialize the webcam capture.
cap = cv2.VideoCapture(0) # 使用0表示默认摄像头
# cap.set(cv2.CAP_PROP_FOURCC, cv2.VideoWriter_fourcc('M', 'J', 'P', 'G'))
# cap.set(cv2.CAP_PROP_FRAME_WIDTH, 800) # 解决问题的关键!!!
# cap.set(cv2.CAP_PROP_FRAME_HEIGHT, 600)
# cap.set(cv2.CAP_PROP_FPS, 30)

image_h = cap.get(cv2.CAP_PROP_FRAME_HEIGHT)
image_w = cap.get(cv2.CAP_PROP_FRAME_WIDTH)
frame_num = 0
print(image_h, image_w)

with mp_pose.Pose(
        min_detection_confidence=0.7,
        min_tracking_confidence=0.5) as pose:
    while cap.isOpened():
        fps_time = time.time()
        frame_num += 1
        success, image = cap.read()
        if not success:
            print("Ignoring empty camera frame.")
            # 如果是实时摄像头,不需要使用'continue'
            continue

        # 提高性能
        image.flags.writeable = False
        image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
        results = pose.process(image)

        if not results.pose_landmarks:
            continue

        # 识别骨骼点
        image.flags.writeable = True
        image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)

        # mp_drawing.draw_landmarks(
        #     image,
        #     results.pose_landmarks,
        #     mp_pose.POSE_CONNECTIONS,
        #     landmark_drawing_spec=mp_drawing_styles.get_default_pose_landmarks_style())

        landmarks = results.pose_landmarks.landmark
        joints = np.array([[landmarks[joint].x * image_w,
                            landmarks[joint].y * image_h,
                            landmarks[joint].visibility]
                           for joint in KEY_JOINTS])
        # 人体框
        box_l, box_r = int(joints[:, 0].min())-50, int(joints[:, 0].max())+50
        box_t, box_b = int(joints[:, 1].min())-100, int(joints[:, 1].max())+100

        self.joints_list.append(joints)

        # 识别动作
        action = ''
        clr = (0, 255, 0)
        # 30帧数据预测动作类型
        if len(self.joints_list) == ACTION_MODEL_MAX_FRAMES:
            pts = np.array(self.joints_list, dtype=np.float32)
            out = self.action_model.predict(pts, (image_w, image_h))
            action_name = self.action_model.class_names[out[0].argmax()]
            action = '{}: {:.2f}%'.format(action_name, out[0].max() * 100)
            print(action)
            if action_name == 'Fall Down':
                if self.isOk == True:
                    requests.get('http://localhost:8080/book/isokfalse')
                    self.isOk = False

                clr = (255, 0, 0)
                action = '摔倒'
            elif action_name == 'Walking':
                clr = (255, 128, 0)
                action = '行走'
            else:
                action = ''

        # 绘制骨骼点和动作类别
        image = self.draw_skeleton(image, self.joints_list[-1])
        image = cv2.rectangle(image, (box_l, box_t), (box_r, box_b), (255, 0, 0), 1)
        image = self.cv2_add_chinese_text(image, f'当前状态:{action}', (box_l + 10, box_t + 10), clr, 40)
        image = cv2.putText(image, f'FPS: {int(1.0 / (time.time() - fps_time))}',
                            (50, 50), cv2.FONT_HERSHEY_PLAIN, 3, (0, 255, 0), 2)
        # Flip the image horizontally for a selfie-view display.
        cv2.imshow('MediaPipe Pose', image)
        if cv2.waitKey(1) & 0xFF == ord("q"):
            break

    # Release the resources.
    cap.release()
    cv2.destroyAllWindows()

if name == 'main':
FallDetection().detect()

import time
from collections import deque
import cv2
import numpy as np
import mediapipe as mp
from stgcn.stgcn import STGCN
from PIL import Image, ImageDraw, ImageFont
mp_drawing = mp.solutions.drawing_utils
mp_drawing_styles = mp.solutions.drawing_styles
mp_pose = mp.solutions.pose
KEY_JOINTS = [
mp_pose.PoseLandmark.NOSE,
mp_pose.PoseLandmark.LEFT_SHOULDER,
mp_pose.PoseLandmark.RIGHT_SHOULDER,
mp_pose.PoseLandmark.LEFT_ELBOW,
mp_pose.PoseLandmark.RIGHT_ELBOW,
mp_pose.PoseLandmark.LEFT_WRIST,
mp_pose.PoseLandmark.RIGHT_WRIST,
mp_pose.PoseLandmark.LEFT_HIP,
mp_pose.PoseLandmark.RIGHT_HIP,
mp_pose.PoseLandmark.LEFT_KNEE,
mp_pose.PoseLandmark.RIGHT_KNEE,
mp_pose.PoseLandmark.LEFT_ANKLE,
mp_pose.PoseLandmark.RIGHT_ANKLE
]
POSE_CONNECTIONS = [(6, 4), (4, 2), (2, 13), (13, 1), (5, 3), (3, 1), (12, 10),
(10, 8), (8, 2), (11, 9), (9, 7), (7, 1), (13, 0)]
POINT_COLORS = [(0, 255, 255), (0, 191, 255), (0, 255, 102), (0, 77, 255), (0, 255, 0), # Nose, LEye, REye, LEar, REar
(77, 255, 255), (77, 255, 204), (77, 204, 255), (191, 255, 77), (77, 191, 255), (191, 255, 77), # LShoulder, RShoulder, LElbow, RElbow, LWrist, RWrist
(204, 77, 255), (77, 255, 204), (191, 77, 255), (77, 255, 191), (127, 77, 255), (77, 255, 127), (0, 255, 255)] # LHip, RHip, LKnee, Rknee, LAnkle, RAnkle, Neck
LINE_COLORS = [(0, 215, 255), (0, 255, 204), (0, 134, 255), (0, 255, 50), (77, 255, 222),
(77, 196, 255), (77, 135, 255), (191, 255, 77), (77, 255, 77), (77, 222, 255),
(255, 156, 127), (0, 127, 255), (255, 127, 77), (0, 77, 255), (255, 77, 36)]
ACTION_MODEL_MAX_FRAMES = 30
class FallDetection:
def init(self):
self.action_model = STGCN(weight_file='./weights/tsstg-model.pth', device='cpu')
self.joints_list = deque(maxlen=ACTION_MODEL_MAX_FRAMES)
def draw_skeleton(self, frame, pts):
l_pair = POSE_CONNECTIONS
p_color = POINT_COLORS
line_color = LINE_COLORS
part_line = {}
pts = np.concatenate((pts, np.expand_dims((pts[1, :] + pts[2, :]) / 2, 0)), axis=0)
for n in range(pts.shape[0]):
if pts[n, 2] <= 0.05:
continue
cor_x, cor_y = int(pts[n, 0]), int(pts[n, 1])
part_line[n] = (cor_x, cor_y)
cv2.circle(frame, (cor_x, cor_y), 3, p_color[n], -1)

cv2.putText(frame, str(n), (cor_x+10, cor_y+10), cv2.FONT_HERSHEY_PLAIN, 1, (0, 0, 255), 1)

for i, (start_p, end_p) in enumerate(l_pair):
if start_p in part_line and end_p in part_line:
start_xy = part_line[start_p]
end_xy = part_line[end_p]
cv2.line(frame, start_xy, end_xy, line_color[i], int(1*(pts[start_p, 2] + pts[end_p, 2]) + 3))
return frame
def cv2_add_chinese_text(self, img, text, position, textColor=(0, 255, 0), textSize=30):
if (isinstance(img, np.ndarray)): # 判断是否OpenCV图片类型
img = Image.fromarray(cv2.cvtColor(img, cv2.COLOR_BGR2RGB))

创建一个可以在给定图像上绘图的对象

draw = ImageDraw.Draw(img)

字体的格式

fontStyle = ImageFont.truetype(
"./fonts/MSYH.ttc", textSize, encoding="utf-8")

绘制文本

draw.text(position, text, textColor, font=fontStyle)

转换回OpenCV格式

return cv2.cvtColor(np.asarray(img), cv2.COLOR_RGB2BGR)
def detect(self):

Initialize the webcam capture.

cap = cv2.VideoCapture('./video.mp4')
image_h = cap.get(cv2.CAP_PROP_FRAME_HEIGHT)
image_w = cap.get(cv2.CAP_PROP_FRAME_WIDTH)
frame_num = 0
print(image_h, image_w)
with mp_pose.Pose(
min_detection_confidence=0.7,
min_tracking_confidence=0.5) as pose:
while cap.isOpened():
fps_time = time.time()
frame_num += 1
success, image = cap.read()
if not success:
print("Ignoring empty camera frame.")

If loading a video, use 'break' instead of 'continue'.

continue

提高性能

image.flags.writeable = False
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
results = pose.process(image)
if not results.pose_landmarks:
continue

识别骨骼点

image.flags.writeable = True
image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)

mp_drawing.draw_landmarks(

image,

results.pose_landmarks,

mp_pose.POSE_CONNECTIONS,

landmark_drawing_spec=mp_drawing_styles.get_default_pose_landmarks_style())

landmarks = results.pose_landmarks.landmark
joints = np.array([[landmarks[joint].x * image_w,
landmarks[joint].y * image_h,
landmarks[joint].visibility]
for joint in KEY_JOINTS])

人体框

box_l, box_r = int(joints[:, 0].min())-50, int(joints[:, 0].max())+50
box_t, box_b = int(joints[:, 1].min())-100, int(joints[:, 1].max())+100
self.joints_list.append(joints)

识别动作

action = ''
clr = (0, 255, 0)

30帧数据预测动作类型

if len(self.joints_list) == ACTION_MODEL_MAX_FRAMES:
pts = np.array(self.joints_list, dtype=np.float32)
out = self.action_model.predict(pts, (image_w, image_h))
action_name = self.action_model.class_names[out[0].argmax()]
action = '{}: {:.2f}%'.format(action_name, out[0].max() * 100)
print(action)
if action_name == 'Fall Down':
clr = (255, 0, 0)
action = '摔倒'
elif action_name == 'Walking':
clr = (255, 128, 0)
action = '行走'
else:
action = ''

绘制骨骼点和动作类别

image = self.draw_skeleton(image, self.joints_list[-1])
image = cv2.rectangle(image, (box_l, box_t), (box_r, box_b), (255, 0, 0), 1)
image = self.cv2_add_chinese_text(image, f'当前状态:{action}', (box_l + 10, box_t + 10), clr, 40)
image = cv2.putText(image, f'FPS: {int(1.0 / (time.time() - fps_time))}',
(50, 50), cv2.FONT_HERSHEY_PLAIN, 3, (0, 255, 0), 2)

Flip the image horizontally for a selfie-view display.

cv2.imshow('MediaPipe Pose', image)
if cv2.waitKey(1) & 0xFF == ord("q"):
break

Release the resources.

cap.release()
cv2.destroyAllWindows()
if name == 'main':
FallDetection().detect()

标签:展示,最终,pose,cv2,成功,77,mp,image,255
From: https://www.cnblogs.com/wwwdeBLOG/p/18253218

相关文章

  • dart闪屏成功跳转
    import'package:flutter/material.dart';voidmain(){runApp(constMyApp());}classMyAppextendsStatelessWidget{constMyApp({super.key});@overrideWidgetbuild(BuildContextcontext){returnconstMaterialApp(title:&......
  • 低代码赋能企业数字化转型:数百家软件公司的成功实践
    本文转载于葡萄城公众号,原文链接:https://mp.weixin.qq.com/s/gN8Rq9TDmkMpCtNMMsBUXQ导读在当今的软件开发时代,以新技术助力企业数字化转型已经成为一个热门话题。如何快速适应技术变革,构建符合时代需求的技术能力和业务模式,成为了软件公司必须面对的课题。在这个背景下,低代码......
  • 使用expected_conditions的url_changes方法判断是否登录成功
    使用expected_conditions的url_changes方法判断是否跳转页面登录成功fromseleniumimportwebdriverfromselenium.webdriver.supportimportexpected_conditionsasecfromselenium.webdriver.support.waitimportWebDriverWaitdeflogin():driver=webdrive......
  • 开个技术外挂 | 数字孪生技术如何成为美洲杯帆船赛成功的关键?
    若您对数据分析以及人工智能感兴趣,欢迎与我们一起站在全球视野关注人工智能的发展,与Forrester、德勤、麦肯锡等全球知名企业共探AI如何加速工业变革,共享众多优秀行业案例,开启AI人工智能全球新视野!!共同参与6月20日由Altair主办的面向工程师的全球线上人工智能会议“AIforEng......
  • Chromium源码阅读:从页面加载到元素展示(1)
    ​从<p>helloworld</p>.html到界面上的helloworld今天,我们一起来看看一个html元素,是如何绘制到界面上。我们选择了最简单的场景,便于快速掌握总体的流程,加深之前阅读知识的印象。准备环境首先,我们保存这段html:<html><body><p>Helloworld</p></body><......
  • 使用winehq在Mac上成功运行Win系统exe应用程序
    使用Wine可以在Mac上运行一部分exe程序,但是注意⚠️可能会运行失败!第一部分失败尝试(可跳过通过下面连接下载软件https://dl.winehq.org/wine-builds/macosx/download.html安装好后显示上面链接软件过期,并且要求下载XQUartzbrewinstallXQuartz第二部分成功重新找下载站点......
  • linux环境 kafka3.4.0 刚搭建好(用kraft替代zookeeper) 怎么建个topic测试一下消费有没
        在使用Kafka3.4.0并且用Kraft(KafkaRaft)替代Zookeeper的情况下,步骤会有一些变化。这是因为Kraft模式下Kafka自身管理元数据,而不再依赖Zookeeper。以下是使用Kraft模式的Kafka3.4.0创建topic并进行生产和消费测试的具体步骤:###1.**启动Kaf......
  • 干货分享!渗透测试成功的8个关键
     01知道为什么要测试执行渗透测试的目的是什么?是满足审计要求?是你需要知道某个新应用在现实世界中表现如何?你最近换了安全基础设施中某个重要组件而需要知道它是否有效?或者渗透测试根本就是作为你定期检查防御健康的一项例行公事?当你清楚做测试的原因时,你也就知晓自己想......
  • 战略引领下的成功产品开发之路
    在当今竞争激烈的市场环境中,成功的产品开发不仅仅依赖于创意和技术的卓越,更需要战略性的规划和执行。本文将探讨战略在成功产品开发中的重要性,并结合实际案例,分析如何在战略的指引下,将创意转化为商业化的产品或服务。一、战略在产品开发中的核心地位产品开发战略是企业实......
  • 【Python】成功解决UnicodeDecodeError: ‘gbk‘ codec can‘t decode byte 0x80 in p
    【Python】成功解决UnicodeDecodeError:‘gbk’codeccan’tdecodebyte0x80inposition45:illegalmultibytesequence 下滑即可查看博客内容......