目录
1 三维空间(3D)杆单元的坐标变换
三维空间问题中的杆单元如上图所示
1.1 单元位移场的表达
该杆单元在局部坐标系下( o x ox ox)的节点位移依旧为
q e = [ u 1 u 2 ] = [ u 1 u 2 ] T \begin{equation} \begin{aligned} \mathbf{q}^e = \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} = \begin{bmatrix} u_1 & u_2 \end{bmatrix}^{T} \end{aligned} \end{equation} qe=[u1u2]=[u1u2]T
而整体坐标系中( o x y z ‾ \overline{oxyz} oxyz)的节点位移列阵为
q ‾ e = [ u ‾ 1 v ‾ 1 w ‾ 1 u ‾ 2 v ‾ 2 w ‾ 2 ] = [ u ‾ 1 v ‾ 1 w ‾ 1 u ‾ 2 v ‾ 2 w ‾ 2 ] T \begin{equation} \begin{aligned} \overline{\mathbf{q}}^e = \begin{bmatrix} \overline{u}_1 \\ \overline{v}_1 \\ \overline{w}_1 \\ \overline{u}_2 \\ \overline{v}_2 \\ \overline{w}_2 \end{bmatrix} = \begin{bmatrix} \overline{u}_1 & \overline{v}_1 & \overline{w}_1 & \overline{u}_2 & \overline{v}_2 & \overline{w}_2 \end{bmatrix}^{T} \end{aligned} \end{equation} qe= u1v1w1u2v2w2 =[u1v1w1u2v2w2]T
杆单元轴线在整体坐标系中的方向余弦为
cos ( x , x ‾ ) = x ‾ 2 − x ‾ 1 l cos ( x , y ‾ ) = y ‾ 2 − y ‾ 1 l cos ( x , z ‾ ) = z ‾ 2 − z ‾ 1 l \begin{equation} \begin{aligned} \cos (x,\overline{x}) = \cfrac{\overline{x}_2 - \overline{x}_1}{l} \quad \cos (x,\overline{y}) = \cfrac{\overline{y}_2 - \overline{y}_1}{l} \quad \cos (x,\overline{z}) = \cfrac{\overline{z}_2 - \overline{z}_1}{l} \end{aligned} \end{equation} cos(x,x)=lx2−x1cos(x,y)=ly2−y1cos(x,z)=lz2−z1
其中 ( x ‾ 1 , y ‾ 1 , z ‾ 1 ) (\overline{x}_1, \overline{y}_1, \overline{z}_1) (x1,y1,z1)和 ( x ‾ 2 , y ‾ 2 , z ‾ 2 ) (\overline{x}_2, \overline{y}_2, \overline{z}_2) (x2,y2,z2)分别为杆单元的两个端点在整体坐标系中的位置, l l l为杆单元的长度,与平面坐标系中类似, q e \mathbf{q}^e qe与 q ‾ e \overline{\mathbf{q}}^e qe之间存在以下转换关系
q e = [ u 1 u 2 ] = [ cos ( x , x ‾ ) cos ( x , y ‾ ) cos ( x , z ‾ ) 0 0 0 0 0 0 cos ( x , x ‾ ) cos ( x , y ‾ ) cos ( x , z ‾ ) ] [ u ‾ 1 v ‾ 1 w ‾ 1 u ‾ 2 v ‾ 2 w ‾ 2 ] = T e q ‾ e \begin{equation} \begin{aligned} \mathbf{q}^e &= \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} \\ &= \begin{bmatrix} \cos (x,\overline{x}) & \cos (x,\overline{y}) & \cos (x,\overline{z}) & 0 & 0 & 0 \\ 0 & 0 & 0 & \cos (x,\overline{x}) & \cos (x,\overline{y}) & \cos (x,\overline{z}) \end{bmatrix} \begin{bmatrix} \overline{u}_1 \\ \overline{v}_1 \\ \overline{w}_1 \\ \overline{u}_2 \\ \overline{v}_2 \\ \overline{w}_2 \end{bmatrix} \\ &= \mathbf{T}^{e} \overline{\mathbf{q}}^e \end{aligned} \end{equation} qe=[u1u2]=[cos(x,x)0cos(x,y)0cos(x,z)00cos(x,x)0cos(x,y)0cos(x,z)] u1v1w1u2v2w2 =Teqe
式中: T e \mathbf{T}^{e} Te为坐标变换矩阵,即
T e = [ cos ( x , x ‾ ) cos ( x , y ‾ ) cos ( x , z ‾ ) 0 0 0 0 0 0 cos ( x , x ‾ ) cos ( x , y ‾ ) cos ( x , z ‾ ) ] \begin{equation} \begin{aligned} \mathbf{T}^{e} = \begin{bmatrix} \cos (x,\overline{x}) & \cos (x,\overline{y}) & \cos (x,\overline{z}) & 0 & 0 & 0 \\ 0 & 0 & 0 & \cos (x,\overline{x}) & \cos (x,\overline{y}) & \cos (x,\overline{z}) \end{bmatrix} \end{aligned} \end{equation} Te=[cos(x,x)0cos(x,y)0cos(x,z)00cos(x,x)0cos(x,y)0cos(x,z)]
刚度矩阵和节点力的变换与平面情形相同,即
K ‾ e ( 6 × 6 ) = T e T ( 6 × 2 ) K e ( 2 × 2 ) T e ( 2 × 6 ) \begin{equation} \begin{aligned} \underset{(6 \times 6)}{\overline{\mathbf{K}}^e} = \underset{(6 \times 2)}{\mathbf{T}^{eT}} \underset{(2 \times 2)}{\mathbf{K}^e} \underset{(2 \times 6)}{\mathbf{T}^e} \end{aligned} \end{equation} (6×6)Ke=(6×2)TeT(2×2)Ke(2×6)Te
P ‾ e ( 6 × 2 ) = T e T ( 6 × 2 ) P e ( 2 × 1 ) \begin{equation} \begin{aligned} \underset{(6 \times 2)}{\overline{\mathbf{P}}^e} = \underset{(6 \times 2)}{\mathbf{T}^{eT}} \underset{(2 \times 1)}{\mathbf{P}^e} \end{aligned} \end{equation} (6×2)Pe=(6×2)TeT(2×1)Pe
单元应变场、应力场、势能、刚度方程表达与二维空间中类似,仅需改变坐标变换矩阵 T e \mathbf{T}^{e} Te即可
1.2 三维空间(3D)多连杆示例
上图为整体坐标系中的三维空间三连杆结构,故每个杆件的单元刚度方程分别为
K ( 1 ) ⋅ q ( 1 ) = P ( 1 ) [ K 11 ( 1 ) K 12 ( 1 ) K 13 ( 1 ) K 14 ( 1 ) K 15 ( 1 ) K 16 ( 1 ) K 21 ( 1 ) K 22 ( 1 ) K 23 ( 1 ) K 24 ( 1 ) K 25 ( 1 ) K 26 ( 1 ) K 31 ( 1 ) K 32 ( 1 ) K 33 ( 1 ) K 34 ( 1 ) K 35 ( 1 ) K 36 ( 1 ) K 41 ( 1 ) K 42 ( 1 ) K 43 ( 1 ) K 44 ( 1 ) K 45 ( 1 ) K 46 ( 1 ) K 51 ( 1 ) K 52 ( 1 ) K 53 ( 1 ) K 54 ( 1 ) K 55 ( 1 ) K 56 ( 1 ) K 61 ( 1 ) K 62 ( 1 ) K 63 ( 1 ) K 64 ( 1 ) K 65 ( 1 ) K 66 ( 1 ) ] ⋅ [ u ‾ 1 v ‾ 1 w ‾ 1 u ‾ 2 v ‾ 2 w ‾ 2 ] = [ P ‾ x 1 ( 1 ) P ‾ y 1 ( 1 ) P ‾ z 1 ( 1 ) P ‾ x 2 ( 1 ) P ‾ y 2 ( 1 ) P ‾ z 2 ( 1 ) ] \begin{equation} \begin{aligned} \mathbf{K}^{(1)} \cdot \mathbf{q}^{(1)} &= \mathbf{P}^{(1)} \\ \begin{bmatrix} K_{11}^{(1)} & K_{12}^{(1)} & K_{13}^{(1)} & K_{14}^{(1)} & K_{15}^{(1)} & K_{16}^{(1)}\\ K_{21}^{(1)} & K_{22}^{(1)} & K_{23}^{(1)} & K_{24}^{(1)} & K_{25}^{(1)} & K_{26}^{(1)}\\ K_{31}^{(1)} & K_{32}^{(1)} & K_{33}^{(1)} & K_{34}^{(1)} & K_{35}^{(1)} & K_{36}^{(1)} \\ K_{41}^{(1)} & K_{42}^{(1)} & K_{43}^{(1)} & K_{44}^{(1)} & K_{45}^{(1)} & K_{46}^{(1)} \\ K_{51}^{(1)} & K_{52}^{(1)} & K_{53}^{(1)} & K_{54}^{(1)} & K_{55}^{(1)} & K_{56}^{(1)} \\ K_{61}^{(1)} & K_{62}^{(1)} & K_{63}^{(1)} & K_{64}^{(1)} & K_{65}^{(1)} & K_{66}^{(1)} \end{bmatrix} \cdot \begin{bmatrix} \overline{u}_1 \\ \overline{v}_1 \\ \overline{w}_1 \\ \overline{u}_2 \\ \overline{v}_2 \\ \overline{w}_2 \\ \end{bmatrix} &= \begin{bmatrix} \overline{P}_{x1}^{(1)} \\ \overline{P}_{y1}^{(1)} \\ \overline{P}_{z1}^{(1)} \\ \overline{P}_{x2}^{(1)} \\ \overline{P}_{y2}^{(1)} \\ \overline{P}_{z2}^{(1)} \end{bmatrix} \end{aligned} \end{equation} K(1)⋅q(1) K11(1)K21(1)K31(1)K41(1)K51(1)K61(1)K12(1)K22(1)K32(1)K42(1)K52(1)K62(1)K13(1)K23(1)K33(1)K43(1)K53(1)K63(1)K14(1)K24(1)K34(1)K44(1)K54(1)K64(1)K15(1)K25(1)K35(1)K45(1)K55(1)K65(1)K16(1)K26(1)K36(1)K46(1)K56(1)K66(1) ⋅ u1v1w1u2v2w2 =P(1)= Px1(1)Py1(1)Pz1(1)Px2(1)Py2(1)Pz2(1)
K ( 2 ) ⋅ q ( 2 ) = P ( 2 ) [ K 44 ( 2 ) K 45 ( 2 ) K 46 ( 2 ) K 47 ( 2 ) K 48 ( 2 ) K 49 ( 2 ) K 54 ( 2 ) K 55 ( 2 ) K 56 ( 2 ) K 57 ( 2 ) K 58 ( 2 ) K 59 ( 2 ) K 64 ( 2 ) K 65 ( 2 ) K 66 ( 2 ) K 67 ( 2 ) K 68 ( 2 ) K 69 ( 2 ) K 74 ( 2 ) K 75 ( 2 ) K 76 ( 2 ) K 77 ( 2 ) K 78 ( 2 ) K 79 ( 2 ) K 84 ( 2 ) K 85 ( 2 ) K 86 ( 2 ) K 87 ( 2 ) K 88 ( 2 ) K 89 ( 2 ) K 94 ( 2 ) K 95 ( 2 ) K 96 ( 2 ) K 97 ( 2 ) K 98 ( 2 ) K 99 ( 2 ) ] ⋅ [ u ‾ 2 v ‾ 2 w ‾ 2 u ‾ 3 v ‾ 3 w ‾ 3 ] = [ P ‾ x 2 ( 2 ) P ‾ y 2 ( 2 ) P ‾ z 2 ( 2 ) P ‾ x 3 ( 2 ) P ‾ y 3 ( 2 ) P ‾ z 3 ( 2 ) ] \begin{equation} \begin{aligned} \mathbf{K}^{(2)} \cdot \mathbf{q}^{(2)} &= \mathbf{P}^{(2)} \\ \begin{bmatrix} K_{44}^{(2)} & K_{45}^{(2)} & K_{46}^{(2)} & K_{47}^{(2)} & K_{48}^{(2)} & K_{49}^{(2)}\\ K_{54}^{(2)} & K_{55}^{(2)} & K_{56}^{(2)} & K_{57}^{(2)} & K_{58}^{(2)} & K_{59}^{(2)}\\ K_{64}^{(2)} & K_{65}^{(2)} & K_{66}^{(2)} & K_{67}^{(2)} & K_{68}^{(2)} & K_{69}^{(2)} \\ K_{74}^{(2)} & K_{75}^{(2)} & K_{76}^{(2)} & K_{77}^{(2)} & K_{78}^{(2)} & K_{79}^{(2)} \\ K_{84}^{(2)} & K_{85}^{(2)} & K_{86}^{(2)} & K_{87}^{(2)} & K_{88}^{(2)} & K_{89}^{(2)} \\ K_{94}^{(2)} & K_{95}^{(2)} & K_{96}^{(2)} & K_{97}^{(2)} & K_{98}^{(2)} & K_{99}^{(2)} \end{bmatrix} \cdot \begin{bmatrix} \overline{u}_2 \\ \overline{v}_2 \\ \overline{w}_2 \\ \overline{u}_3 \\ \overline{v}_3 \\ \overline{w}_3 \\ \end{bmatrix} &= \begin{bmatrix} \overline{P}_{x2}^{(2)} \\ \overline{P}_{y2}^{(2)} \\ \overline{P}_{z2}^{(2)} \\ \overline{P}_{x3}^{(2)} \\ \overline{P}_{y3}^{(2)} \\ \overline{P}_{z3}^{(2)} \end{bmatrix} \end{aligned} \end{equation} K(2)⋅q(2) K44(2)K54(2)K64(2)K74(2)K84(2)K94(2)K45(2)K55(2)K65(2)K75(2)K85(2)K95(2)K46(2)K56(2)K66(2)K76(2)K86(2)K96(2)K47(2)K57(2)K67(2)K77(2)K87(2)K97(2)K48(2)K58(2)K68(2)K78(2)K88(2)K98(2)K49(2)K59(2)K69(2)K79(2)K89(2)K99(2) ⋅ u2v2w2u3v3w3 =P(2)= Px2(2)Py2(2)Pz2(2)Px3(2)Py3(2)Pz3(2)
K ( 3 ) ⋅ q ( 3 ) = P ( 3 ) [ K 77 ( 3 ) K 78 ( 3 ) K 79 ( 3 ) K 710 ( 3 ) K 711 ( 3 ) K 712 ( 3 ) K 87 ( 3 ) K 88 ( 3 ) K 89 ( 3 ) K 810 ( 3 ) K 811 ( 3 ) K 812 ( 3 ) K 97 ( 3 ) K 98 ( 3 ) K 99 ( 3 ) K 910 ( 3 ) K 911 ( 3 ) K 912 ( 3 ) K 107 ( 3 ) K 108 ( 3 ) K 109 ( 3 ) K 1010 ( 3 ) K 1011 ( 3 ) K 1012 ( 3 ) K 117 ( 3 ) K 118 ( 3 ) K 119 ( 3 ) K 1110 ( 3 ) K 1111 ( 3 ) K 1112 ( 3 ) K 127 ( 3 ) K 128 ( 3 ) K 129 ( 3 ) K 1210 ( 3 ) K 1211 ( 3 ) K 1212 ( 3 ) ] ⋅ [ u ‾ 3 v ‾ 3 w ‾ 3 u ‾ 4 v ‾ 4 w ‾ 4 ] = [ P ‾ x 3 ( 3 ) P ‾ y 3 ( 3 ) P ‾ z 3 ( 3 ) P ‾ x 4 ( 3 ) P ‾ y 4 ( 3 ) P ‾ z 4 ( 3 ) ] \begin{equation} \begin{aligned} \mathbf{K}^{(3)} \cdot \mathbf{q}^{(3)} &= \mathbf{P}^{(3)} \\ \begin{bmatrix} K_{77}^{(3)} & K_{78}^{(3)} & K_{79}^{(3)} & K_{710}^{(3)} & K_{711}^{(3)} & K_{712}^{(3)}\\ K_{87}^{(3)} & K_{88}^{(3)} & K_{89}^{(3)} & K_{810}^{(3)} & K_{811}^{(3)} & K_{812}^{(3)}\\ K_{97}^{(3)} & K_{98}^{(3)} & K_{99}^{(3)} & K_{910}^{(3)} & K_{911}^{(3)} & K_{912}^{(3)} \\ K_{107}^{(3)} & K_{108}^{(3)} & K_{109}^{(3)} & K_{1010}^{(3)} & K_{1011}^{(3)} & K_{1012}^{(3)} \\ K_{117}^{(3)} & K_{118}^{(3)} & K_{119}^{(3)} & K_{1110}^{(3)} & K_{1111}^{(3)} & K_{1112}^{(3)} \\ K_{127}^{(3)} & K_{128}^{(3)} & K_{129}^{(3)} & K_{1210}^{(3)} & K_{1211}^{(3)} & K_{1212}^{(3)} \end{bmatrix} \cdot \begin{bmatrix} \overline{u}_3 \\ \overline{v}_3 \\ \overline{w}_3 \\ \overline{u}_4 \\ \overline{v}_4 \\ \overline{w}_4 \end{bmatrix} &= \begin{bmatrix} \overline{P}_{x3}^{(3)} \\ \overline{P}_{y3}^{(3)} \\ \overline{P}_{z3}^{(3)} \\ \overline{P}_{x4}^{(3)} \\ \overline{P}_{y4}^{(3)} \\ \overline{P}_{z4}^{(3)} \end{bmatrix} \end{aligned} \end{equation} K(3)⋅q(3) K77(3)K87(3)K97(3)K107(3)K117(3)K127(3)K78(3)K88(3)K98(3)K108(3)K118(3)K128(3)K79(3)K89(3)K99(3)K109(3)K119(3)K129(3)K710(3)K810(3)K910(3)K1010(3)K1110(3)K1210(3)K711(3)K811(3)K911(3)K1011(3)K1111(3)K1211(3)K712(3)K812(3)K912(3)K1012(3)K1112(3)K1212(3) ⋅ u3v3w3u4v4w4 =P(3)= Px3(3)Py3(3)Pz3(3)Px4(3)Py4(3)Pz4(3)
组装成整体刚度方程为
K ( A l l ) ⋅ q ( A l l ) = P ( A l l ) [ K 11 ( 1 ) K 12 ( 1 ) K 13 ( 1 ) K 14 ( 1 ) K 15 ( 1 ) K 16 ( 1 ) 0 0 0 0 0 0 K 21 ( 1 ) K 22 ( 1 ) K 23 ( 1 ) K 24 ( 1 ) K 25 ( 1 ) K 26 ( 1 ) 0 0 0 0 0 0 K 31 ( 1 ) K 32 ( 1 ) K 33 ( 1 ) K 34 ( 1 ) K 35 ( 1 ) K 36 ( 1 ) 0 0 0 0 0 0 K 41 ( 1 ) K 42 ( 1 ) K 43 ( 1 ) K 44 ( 1 ) + K 44 ( 2 ) K 45 ( 1 ) + K 45 ( 2 ) K 46 ( 1 ) + K 46 ( 2 ) K 47 ( 2 ) K 48 ( 2 ) K 49 ( 2 ) 0 0 0 K 51 ( 1 ) K 52 ( 1 ) K 53 ( 1 ) K 54 ( 1 ) + K 54 ( 2 ) K 55 ( 1 ) + K 55 ( 2 ) K 56 ( 1 ) + K 56 ( 2 ) K 57 ( 2 ) K 58 ( 2 ) K 59 ( 2 ) 0 0 0 K 61 ( 1 ) K 62 ( 1 ) K 63 ( 1 ) K 64 ( 1 ) + K 64 ( 2 ) K 65 ( 1 ) + K 65 ( 2 ) K 66 ( 1 ) + K 66 ( 2 ) K 67 ( 2 ) K 68 ( 2 ) K 69 ( 2 ) 0 0 0 0 0 0 K 74 ( 2 ) K 75 ( 2 ) K 76 ( 2 ) K 77 ( 2 ) + K 77 ( 3 ) K 78 ( 2 ) + K 78 ( 3 ) K 79 ( 2 ) + K 79 ( 3 ) K 710 ( 3 ) K 711 ( 3 ) K 712 ( 3 ) 0 0 0 K 84 ( 2 ) K 85 ( 2 ) K 86 ( 2 ) K 87 ( 2 ) + K 87 ( 3 ) K 88 ( 2 ) + K 88 ( 3 ) K 89 ( 2 ) + K 89 ( 3 ) K 810 ( 3 ) K 811 ( 3 ) K 812 ( 3 ) 0 0 0 K 94 ( 2 ) K 95 ( 2 ) K 96 ( 2 ) K 97 ( 2 ) + K 97 ( 3 ) K 98 ( 2 ) + K 98 ( 3 ) K 99 ( 2 ) + K 99 ( 3 ) K 910 ( 3 ) K 911 ( 3 ) K 912 ( 3 ) 0 0 0 0 0 0 K 107 ( 3 ) K 108 ( 3 ) K 109 ( 3 ) K 1010 ( 3 ) K 1011 ( 3 ) K 1012 ( 3 ) 0 0 0 0 0 0 K 117 ( 3 ) K 118 ( 3 ) K 119 ( 3 ) K 1110 ( 3 ) K 1111 ( 3 ) K 1112 ( 3 ) 0 0 0 0 0 0 K 127 ( 3 ) K 128 ( 3 ) K 129 ( 3 ) K 1210 ( 3 ) K 1211 ( 3 ) K 1212 ( 3 ) ] ⋅ [ u ‾ 1 v ‾ 1 w ‾ 1 u ‾ 2 v ‾ 2 w ‾ 2 u ‾ 3 v ‾ 3 w ‾ 3 u ‾ 4 v ‾ 4 w ‾ 4 ] = [ P ‾ x 1 ( 1 ) P ‾ y 1 ( 1 ) P ‾ z 1 ( 1 ) P ‾ x 2 ( 1 ) + P ‾ x 2 ( 2 ) P ‾ y 2 ( 1 ) + P ‾ y 2 ( 2 ) P ‾ z 2 ( 1 ) + P ‾ z 2 ( 2 ) P ‾ x 3 ( 2 ) + P ‾ x 3 ( 3 ) P ‾ y 3 ( 2 ) + P ‾ y 3 ( 3 ) P ‾ z 3 ( 2 ) + P ‾ z 3 ( 3 ) P ‾ x 4 ( 3 ) P ‾ y 4 ( 3 ) P ‾ z 4 ( 3 ) ] [ K 11 ( 1 ) K 12 ( 1 ) K 13 ( 1 ) K 14 ( 1 ) K 15 ( 1 ) K 16 ( 1 ) 0 0 0 0 0 0 K 21 ( 1 ) K 22 ( 1 ) K 23 ( 1 ) K 24 ( 1 ) K 25 ( 1 ) K 26 ( 1 ) 0 0 0 0 0 0 K 31 ( 1 ) K 32 ( 1 ) K 33 ( 1 ) K 34 ( 1 ) K 35 ( 1 ) K 36 ( 1 ) 0 0 0 0 0 0 K 41 ( 1 ) K 42 ( 1 ) K 43 ( 1 ) K 44 ( 1 ) + K 44 ( 2 ) K 45 ( 1 ) + K 45 ( 2 ) K 46 ( 1 ) + K 46 ( 2 ) K 47 ( 2 ) K 48 ( 2 ) K 49 ( 2 ) 0 0 0 K 51 ( 1 ) K 52 ( 1 ) K 53 ( 1 ) K 54 ( 1 ) + K 54 ( 2 ) K 55 ( 1 ) + K 55 ( 2 ) K 56 ( 1 ) + K 56 ( 2 ) K 57 ( 2 ) K 58 ( 2 ) K 59 ( 2 ) 0 0 0 K 61 ( 1 ) K 62 ( 1 ) K 63 ( 1 ) K 64 ( 1 ) + K 64 ( 2 ) K 65 ( 1 ) + K 65 ( 2 ) K 66 ( 1 ) + K 66 ( 2 ) K 67 ( 2 ) K 68 ( 2 ) K 69 ( 2 ) 0 0 0 0 0 0 K 74 ( 2 ) K 75 ( 2 ) K 76 ( 2 ) K 77 ( 2 ) + K 77 ( 3 ) K 78 ( 2 ) + K 78 ( 3 ) K 79 ( 2 ) + K 79 ( 3 ) K 710 ( 3 ) K 711 ( 3 ) K 712 ( 3 ) 0 0 0 K 84 ( 2 ) K 85 ( 2 ) K 86 ( 2 ) K 87 ( 2 ) + K 87 ( 3 ) K 88 ( 2 ) + K 88 ( 3 ) K 89 ( 2 ) + K 89 ( 3 ) K 810 ( 3 ) K 811 ( 3 ) K 812 ( 3 ) 0 0 0 K 94 ( 2 ) K 95 ( 2 ) K 96 ( 2 ) K 97 ( 2 ) + K 97 ( 3 ) K 98 ( 2 ) + K 98 ( 3 ) K 99 ( 2 ) + K 99 ( 3 ) K 910 ( 3 ) K 911 ( 3 ) K 912 ( 3 ) 0 0 0 0 0 0 K 107 ( 3 ) K 108 ( 3 ) K 109 ( 3 ) K 1010 ( 3 ) K 1011 ( 3 ) K 1012 ( 3 ) 0 0 0 0 0 0 K 117 ( 3 ) K 118 ( 3 ) K 119 ( 3 ) K 1110 ( 3 ) K 1111 ( 3 ) K 1112 ( 3 ) 0 0 0 0 0 0 K 127 ( 3 ) K 128 ( 3 ) K 129 ( 3 ) K 1210 ( 3 ) K 1211 ( 3 ) K 1212 ( 3 ) ] ⋅ [ u ‾ 1 v ‾ 1 w ‾ 1 u ‾ 2 v ‾ 2 w ‾ 2 u ‾ 3 v ‾ 3 w ‾ 3 u ‾ 4 v ‾ 4 w ‾ 4 ] = [ P ‾ x 1 P ‾ y 1 P ‾ z 1 P ‾ x 2 P ‾ y 2 P ‾ z 2 P ‾ x 3 P ‾ y 3 P ‾ z 3 P ‾ x 4 P ‾ y 4 P ‾ z 4 ] \begin{equation} \begin{aligned} \mathbf{K}^{(All)} \cdot \mathbf{q}^{(All)} &= \mathbf{P}^{(All)} \\ \begin{bmatrix} K_{11}^{(1)} & K_{12}^{(1)} & K_{13}^{(1)} & K_{14}^{(1)} & K_{15}^{(1)} & K_{16}^{(1)} & 0 & 0 & 0 & 0 & 0 & 0 \\ K_{21}^{(1)} & K_{22}^{(1)} & K_{23}^{(1)} & K_{24}^{(1)} & K_{25}^{(1)} & K_{26}^{(1)} & 0 & 0 & 0 & 0 & 0 & 0 \\ K_{31}^{(1)} & K_{32}^{(1)} & K_{33}^{(1)} & K_{34}^{(1)} & K_{35}^{(1)} & K_{36}^{(1)} & 0 & 0 & 0 & 0 & 0 & 0 \\ K_{41}^{(1)} & K_{42}^{(1)} & K_{43}^{(1)} & K_{44}^{(1)} + K_{44}^{(2)} & K_{45}^{(1)} + K_{45}^{(2)} & K_{46}^{(1)} + K_{46}^{(2)} & K_{47}^{(2)} & K_{48}^{(2)} & K_{49}^{(2)} & 0 & 0 & 0 \\ K_{51}^{(1)} & K_{52}^{(1)} & K_{53}^{(1)} & K_{54}^{(1)} + K_{54}^{(2)} & K_{55}^{(1)} + K_{55}^{(2)} & K_{56}^{(1)} + K_{56}^{(2)} & K_{57}^{(2)} & K_{58}^{(2)} & K_{59}^{(2)} & 0 & 0 & 0 \\ K_{61}^{(1)} & K_{62}^{(1)} & K_{63}^{(1)} & K_{64}^{(1)} + K_{64}^{(2)} & K_{65}^{(1)} + K_{65}^{(2)} & K_{66}^{(1)} + K_{66}^{(2)} & K_{67}^{(2)} & K_{68}^{(2)} & K_{69}^{(2)} & 0 & 0 & 0 \\ 0 & 0 & 0 & K_{74}^{(2)} & K_{75}^{(2)} & K_{76}^{(2)} & K_{77}^{(2)} + K_{77}^{(3)} & K_{78}^{(2)} + K_{78}^{(3)} & K_{79}^{(2)} + K_{79}^{(3)} & K_{710}^{(3)} & K_{711}^{(3)} & K_{712}^{(3)} \\ 0 & 0 & 0 & K_{84}^{(2)} & K_{85}^{(2)} & K_{86}^{(2)} & K_{87}^{(2)} + K_{87}^{(3)} & K_{88}^{(2)} + K_{88}^{(3)} & K_{89}^{(2)} + K_{89}^{(3)} & K_{810}^{(3)} & K_{811}^{(3)} & K_{812}^{(3)} \\ 0 & 0 & 0 & K_{94}^{(2)} & K_{95}^{(2)} & K_{96}^{(2)} & K_{97}^{(2)} + K_{97}^{(3)} & K_{98}^{(2)} + K_{98}^{(3)} & K_{99}^{(2)} + K_{99}^{(3)} & K_{910}^{(3)} & K_{911}^{(3)} & K_{912}^{(3)} \\ 0 & 0 & 0 & 0 & 0 & 0 & K_{107}^{(3)} & K_{108}^{(3)} & K_{109}^{(3)} & K_{1010}^{(3)} & K_{1011}^{(3)} & K_{1012}^{(3)} \\ 0 & 0 & 0 & 0 & 0 & 0 &K_{117}^{(3)} & K_{118}^{(3)} & K_{119}^{(3)} & K_{1110}^{(3)} & K_{1111}^{(3)} & K_{1112}^{(3)} \\ 0 & 0 & 0 & 0 & 0 & 0 &K_{127}^{(3)} & K_{128}^{(3)} & K_{129}^{(3)} & K_{1210}^{(3)} & K_{1211}^{(3)} & K_{1212}^{(3)} \end{bmatrix} \cdot \begin{bmatrix} \overline{u}_1 \\ \overline{v}_1 \\ \overline{w}_1 \\ \overline{u}_2 \\ \overline{v}_2 \\ \overline{w}_2 \\ \overline{u}_3 \\ \overline{v}_3 \\ \overline{w}_3 \\ \overline{u}_4 \\ \overline{v}_4 \\ \overline{w}_4 \end{bmatrix} &= \begin{bmatrix} \overline{P}_{x1}^{(1)} \\ \overline{P}_{y1}^{(1)} \\ \overline{P}_{z1}^{(1)} \\ \overline{P}_{x2}^{(1)} + \overline{P}_{x2}^{(2)} \\ \overline{P}_{y2}^{(1)} + \overline{P}_{y2}^{(2)} \\ \overline{P}_{z2}^{(1)} + \overline{P}_{z2}^{(2)} \\ \overline{P}_{x3}^{(2)} + \overline{P}_{x3}^{(3)} \\ \overline{P}_{y3}^{(2)} + \overline{P}_{y3}^{(3)} \\ \overline{P}_{z3}^{(2)} + \overline{P}_{z3}^{(3)} \\ \overline{P}_{x4}^{(3)} \\ \overline{P}_{y4}^{(3)} \\ \overline{P}_{z4}^{(3)} \end{bmatrix} \\ \begin{bmatrix} K_{11}^{(1)} & K_{12}^{(1)} & K_{13}^{(1)} & K_{14}^{(1)} & K_{15}^{(1)} & K_{16}^{(1)} & 0 & 0 & 0 & 0 & 0 & 0 \\ K_{21}^{(1)} & K_{22}^{(1)} & K_{23}^{(1)} & K_{24}^{(1)} & K_{25}^{(1)} & K_{26}^{(1)} & 0 & 0 & 0 & 0 & 0 & 0 \\ K_{31}^{(1)} & K_{32}^{(1)} & K_{33}^{(1)} & K_{34}^{(1)} & K_{35}^{(1)} & K_{36}^{(1)} & 0 & 0 & 0 & 0 & 0 & 0 \\ K_{41}^{(1)} & K_{42}^{(1)} & K_{43}^{(1)} & K_{44}^{(1)} + K_{44}^{(2)} & K_{45}^{(1)} + K_{45}^{(2)} & K_{46}^{(1)} + K_{46}^{(2)} & K_{47}^{(2)} & K_{48}^{(2)} & K_{49}^{(2)} & 0 & 0 & 0 \\ K_{51}^{(1)} & K_{52}^{(1)} & K_{53}^{(1)} & K_{54}^{(1)} + K_{54}^{(2)} & K_{55}^{(1)} + K_{55}^{(2)} & K_{56}^{(1)} + K_{56}^{(2)} & K_{57}^{(2)} & K_{58}^{(2)} & K_{59}^{(2)} & 0 & 0 & 0 \\ K_{61}^{(1)} & K_{62}^{(1)} & K_{63}^{(1)} & K_{64}^{(1)} + K_{64}^{(2)} & K_{65}^{(1)} + K_{65}^{(2)} & K_{66}^{(1)} + K_{66}^{(2)} & K_{67}^{(2)} & K_{68}^{(2)} & K_{69}^{(2)} & 0 & 0 & 0 \\ 0 & 0 & 0 & K_{74}^{(2)} & K_{75}^{(2)} & K_{76}^{(2)} & K_{77}^{(2)} + K_{77}^{(3)} & K_{78}^{(2)} + K_{78}^{(3)} & K_{79}^{(2)} + K_{79}^{(3)} & K_{710}^{(3)} & K_{711}^{(3)} & K_{712}^{(3)} \\ 0 & 0 & 0 & K_{84}^{(2)} & K_{85}^{(2)} & K_{86}^{(2)} & K_{87}^{(2)} + K_{87}^{(3)} & K_{88}^{(2)} + K_{88}^{(3)} & K_{89}^{(2)} + K_{89}^{(3)} & K_{810}^{(3)} & K_{811}^{(3)} & K_{812}^{(3)} \\ 0 & 0 & 0 & K_{94}^{(2)} & K_{95}^{(2)} & K_{96}^{(2)} & K_{97}^{(2)} + K_{97}^{(3)} & K_{98}^{(2)} + K_{98}^{(3)} & K_{99}^{(2)} + K_{99}^{(3)} & K_{910}^{(3)} & K_{911}^{(3)} & K_{912}^{(3)} \\ 0 & 0 & 0 & 0 & 0 & 0 & K_{107}^{(3)} & K_{108}^{(3)} & K_{109}^{(3)} & K_{1010}^{(3)} & K_{1011}^{(3)} & K_{1012}^{(3)} \\ 0 & 0 & 0 & 0 & 0 & 0 &K_{117}^{(3)} & K_{118}^{(3)} & K_{119}^{(3)} & K_{1110}^{(3)} & K_{1111}^{(3)} & K_{1112}^{(3)} \\ 0 & 0 & 0 & 0 & 0 & 0 &K_{127}^{(3)} & K_{128}^{(3)} & K_{129}^{(3)} & K_{1210}^{(3)} & K_{1211}^{(3)} & K_{1212}^{(3)} \end{bmatrix} \cdot \begin{bmatrix} \overline{u}_1 \\ \overline{v}_1 \\ \overline{w}_1 \\ \overline{u}_2 \\ \overline{v}_2 \\ \overline{w}_2 \\ \overline{u}_3 \\ \overline{v}_3 \\ \overline{w}_3 \\ \overline{u}_4 \\ \overline{v}_4 \\ \overline{w}_4 \end{bmatrix} &= \begin{bmatrix} \overline{P}_{x1} \\ \overline{P}_{y1} \\ \overline{P}_{z1} \\ \overline{P}_{x2} \\ \overline{P}_{y2} \\ \overline{P}_{z2} \\ \overline{P}_{x3} \\ \overline{P}_{y3} \\ \overline{P}_{z3} \\ \overline{P}_{x4} \\ \overline{P}_{y4} \\ \overline{P}_{z4} \end{bmatrix} \end{aligned} \end{equation} K(All)⋅q(All) K11(1)K21(1)K31(1)K41(1)K51(1)K61(1)000000K12(1)K22(1)K32(1)K42(1)K52(1)K62(1)000000K13(1)K23(1)K33(1)K43(1)K53(1)K63(1)000000K14(1)K24(1)K34(1)K44(1)+K44(2)K54(1)+K54(2)K64(1)+K64(2)K74(2)K84(2)K94(2)000K15(1)K25(1)K35(1)K45(1)+K45(2)K55(1)+K55(2)K65(1)+K65(2)K75(2)K85(2)K95(2)000K16(1)K26(1)K36(1)K46(1)+K46(2)K56(1)+K56(2)K66(1)+K66(2)K76(2)K86(2)K96(2)000000K47(2)K57(2)K67(2)K77(2)+K77(3)K87(2)+K87(3)K97(2)+K97(3)K107(3)K117(3)K127(3)000K48(2)K58(2)K68(2)K78(2)+K78(3)K88(2)+K88(3)K98(2)+K98(3)K108(3)K118(3)K128(3)000K49(2)K59(2)K69(2)K79(2)+K79(3)K89(2)+K89(3)K99(2)+K99(3)K109(3)K119(3)K129(3)000000K710(3)K810(3)K910(3)K1010(3)K1110(3)K1210(3)000000K711(3)K811(3)K911(3)K1011(3)K1111(3)K1211(3)000000K712(3)K812(3)K912(3)K1012(3)K1112(3)K1212(3) ⋅ u1v1w1u2v2w2u3v3w3u4v4w4 K11(1)K21(1)K31(1)K41(1)K51(1)K61(1)000000K12(1)K22(1)K32(1)K42(1)K52(1)K62(1)000000K13(1)K23(1)K33(1)K43(1)K53(1)K63(1)000000K14(1)K24(1)K34(1)K44(1)+K44(2)K54(1)+K54(2)K64(1)+K64(2)K74(2)K84(2)K94(2)000K15(1)K25(1)K35(1)K45(1)+K45(2)K55(1)+K55(2)K65(1)+K65(2)K75(2)K85(2)K95(2)000K16(1)K26(1)K36(1)K46(1)+K46(2)K56(1)+K56(2)K66(1)+K66(2)K76(2)K86(2)K96(2)000000K47(2)K57(2)K67(2)K77(2)+K77(3)K87(2)+K87(3)K97(2)+K97(3)K107(3)K117(3)K127(3)000K48(2)K58(2)K68(2)K78(2)+K78(3)K88(2)+K88(3)K98(2)+K98(3)K108(3)K118(3)K128(3)000K49(2)K59(2)K69(2)K79(2)+K79(3)K89(2)+K89(3)K99(2)+K99(3)K109(3)K119(3)K129(3)000000K710(3)K810(3)K910(3)K1010(3)K1110(3)K1210(3)000000K711(3)K811(3)K911(3)K1011(3)K1111(3)K1211(3)000000K712(3)K812(3)K912(3)K1012(3)K1112(3)K1212(3) ⋅ u1v1w1u2v2w2u3v3w3u4v4w4 =P(All)= Px1(1)Py1(1)Pz1(1)Px2(1)+Px2(2)Py2(1)+Py2(2)Pz2(1)+Pz2(2)Px3(2)+Px3(3)Py3(2)+Py3(3)Pz3(2)+Pz3(3)Px4(3)Py4(3)Pz4(3) = Px1Py1Pz1Px2Py2Pz2Px3Py3Pz3Px4Py4Pz4
整体刚度矩阵的组合方式如下图所示
参考
- 曾攀. 有限元分析基础教程[M]. 北京: 清华大学出版社, 2008.