首页 > 其他分享 >LLM应用实战:当图谱问答(KBQA)集成大模型(三)

LLM应用实战:当图谱问答(KBQA)集成大模型(三)

时间:2024-06-12 12:56:08浏览次数:33  
标签:prompt 示例 图谱 KBQA 问题 LLM 慈母 ref

1. 背景

最近比较忙(也有点茫),本qiang~想切入多模态大模型领域,所以一直在潜心研读中...

本次的更新内容主要是响应图谱问答集成LLM项目中反馈问题的优化总结,对KBQA集成LLM不熟悉的客官可以翻翻之前的文章《LLM应用实战:当KBQA集成LLM》、《LLM应用实战:当KBQA集成LLM(二)》。

针对KBQA集成LLM项目,该系列文章主要是通过大模型来代替传统KBQA的相关功能组件,实现知识图谱问答,以及如何针对问答效果、多轮对话、响应时间等优化工作总结,是妥妥的干货篇,感兴趣的客官可以持续关注!

本次的主要优化点在于如下:

1. 响应时间

项目的验收标准是流式首字的响应时间在3s内,而当前服务的平均响应时间在5s-7s之间,不符合项目验收标准。

2. 多轮对话

由于当前多轮对话中的指代消解、默认实体或概念对齐均由大模型处理,由于基座大模型的不稳定性,存在偶现的多轮对话中的对象指代错误的情况。

2. 响应时间优化

2.1 响应时间统计

基于前文展示的流程图,针对每个节点进行单次响应时间的统计,结果如下:

模块

耗时

图谱初始化

558ms(仅第一次会耗时)

候选schema召回

49ms

对齐prompt调用LLM完整响应时间

2800ms

对齐校准

15ms

对话prompt调用LLM首字响应时间

1800ms

 

可以发现两次调用大模型的响应时间耗时基本都在3s,因此重点对LLM调用环节进行优化。

优化方案包括三方面:prompt长度缩减、LLM输出结果简化、使用量化版LLM。

2.2 prompt长度缩减

经过分析比对,不同文本长度,LLM的首字响应时间差别较大,尤其是增加安全机制的非公开LLM。

原因也众所周知,LLM推理过程是基于前文预测下一个token,纵然增加了KV缓存机制、FA2机制,较长的prompt首字响应时间必然大于较短prompt,因此可以针对prompt长度进行缩减,以提高LLM首字响应时间。

由于项目中对齐prompt的平均字符长度为5000字左右,且需要等待LLM全部输出结果后,方才进行后续流程,因此本次优化重点优化对齐prompt中的示例部分。

提供的fewshot示例大概40+条,且大部分示例和用户当前问题不相关,因此将fewshot示例向量化进行存储,当用户提问时,基于语义相似度将问题与fewshot示例进行pk,筛选出语义相似的10条示例作为对齐prompt中的fewshot,以达到缩减prompt长度的效果。

实验结果表明,将40条fewshot减小为10条,响应时间提高0.8s左右。

对话prompt没有进行优化,因为对话prompt不需要等待全部结果输出,只需要首字响应并流式输出即可。

2.3 LLM输出结果简化

LLM输出结果越长,输出全部结果的时间就越长,所以针对对齐prompt的输出长度也做了一些优化,虽然响应时间提升不高。

原始对齐prompt调用LLM的输出如下:

(属性-等于-体重)且(属性值-等于-最大);(属性-等于-食性)且(属性值-等于-肉食性);(概念-等于-恐龙)

主要优化点在于:

1) 属性、实体、概念、属性值分别用P, E, C, V表示

2) 属性、实体、概念中三元组删除“等于”

3) 属性值中的等于用eq代替

4) 且、或分别用&, |表示

因此优化后的LLM输出结果如下:

(P-体重)&(V-eq-最大);(P-食性)&(V-eq-肉食性);(C-恐龙)

2.4 大模型量化

先前使用的非量化版的LLM,更换了INT 8量化版的LLM后,LLM的首响及完整响应时间有了质的提升。

其中对齐prompt完整输出结果由先前的2.8s提升至1.6s,对话prompt的首响时间由1.8s提升至0.6s。

由于使用的是私有化部署的量化版,中间没有安全审核机制,再加上量化的有效推理,所以响应时间提升非常明显。

2.5 思考

经过上述三方面的优化后,平均响应时间2.1s-2.9s之间,满足项目的验收标准。但引入的问题还是需要进一步验证。如prompt输入长度缩减、LLM输出结果长度缩减、切换量化版LLM是否引入问答准确性的降低呢?

针对该问题,基于先前整理的测试集,进行测试验证,准确率层面效果基本保持不变,说明以上优化方法有效!

3. 多轮对话效果优化

3.1 示例

怎么辨认慈母龙

它有啥能力

分布在那些地方?

海百合是百合么?

那它分布在哪里?

上述示例为多轮问答,在测试验证中,运行10次该多轮问答,其中会出现2次”那它分布在哪里?”中的”它”指代到了”慈母龙”,而非正确的”海百合”,因为对齐prompt调用LLM后,输出了“(E-慈母龙)&(P-分布区域)”原因当然可以归咎于LLM的基础能力不足,但如何进行优化呢?

尝试了两种方案:a. 对齐prompt中增加历史参考内容;b. 当前问题与历史问题通过LLM比较,判定是否二者存在关联性。

3.2 历史参考内容

想法也非常简单,LLM直接针对历史的问题和答案进行总结,大概率会存在指代不清的问题,那么如果将历史的问题以及对应指代的实体或概念作为参考项,提供给LLM,那么LLM就多了一层参考,进而可以提高指代的准确性。

历史参考内容引入到对齐prompt部分内容如下:

第一个问题prompt, 历史输入为空,ref也为空

历史输入:

```

 

```

 

现在回答:

in: 怎么辨认慈母龙

 

out:

第二个问题prompt, 存在第1个问题及实体,当前问题的参考ref为”慈母龙”

历史输入:

```

in: 怎么辨认慈母龙

ref: 慈母龙

```

 

现在回答:

in: 它有啥能力

ref: 慈母龙

out:

第三个问题prompt, 存在第1,2个问题及实体,当前问题的参考ref仍为”慈母龙”

历史输入:

```

in: 怎么辨认慈母龙

ref: 慈母龙

in: 它有啥能力

ref: 慈母龙

```

 

现在回答:

in: 分布在那些地方?

ref: 慈母龙

out:

第四个问题prompt, 存在第1,2,3个问题及实体,当前问题的参考ref也为”慈母龙”,即将之前的实体继续带入下一轮,大模型会根据当前问题,结合历史输入,进行实体抽取

历史输入:

```

in: 怎么辨认慈母龙

ref: 慈母龙

in: 它有啥能力

ref: 慈母龙

in: 分布在那些地方?

ref: 慈母龙

```

 

现在回答:

in: 海百合是百合么?

ref: 慈母龙

out:

第五个问题prompt, 存在前四个问题及实体,ref当前为”海百合”

历史输入:

```

in: 怎么辨认慈母龙

ref: 慈母龙

in: 它有啥能力

ref: 慈母龙

in: 分布在那些地方?

ref: 慈母龙

in: 海百合是百合么?

ref: 海百合

```

 

现在回答:

in: 那它分布在哪里?

ref: 海百合

out:

这样即使是20轮以上的问答,LLM也能根据当前ref进行分析比较,保障当前问题描述的实体或概念

3.3 当前问题与历史问题关联性分析

理论上通过引入历史参考内容可以有效解决多轮对话中的指代消解问题,但由于LLM本身泛化能力问题,偶尔会出现ref引入错误的情况,例如,上述第二个问题,当前的ref引入为”海百合、慈母龙”,如何针对该问题进行优化呢?

原因可能是历史问题存在多个时,大模型偶尔无法按照指令针对历史问题进行语义分析,因此可以将当前问题与历史中最后一次出现实体或概念的问题进行关联性分析,比较是否描述的是同一个对象,进而基于分析结果,将ref中的内容进一步约束。即,如果当前问题与历史最后一次出现的问题的实体相关时,则引入历史的实体,否则不引入历史实体。

举个例子说明下,”怎么辨认慈母龙”和”分布在那些地方?”存在关联性(默认第二个问题不存在实体,自动引用前一个问题的实体),则ref为”慈母龙”,而”怎么辨认慈母龙”和”海百合是百合么?”不相关,则ref中只保留”海百合”。

关联性分析也是通过prompt调用LLM实现,对应的prompt内容如下:

你是一个关于自然博物馆的多轮对话的识别器,主要用于识别当前问题与历史问题是否在讨论同一个或一组对象,以便进一步区分多轮对话的边界,请参考如下要求和示例进行输出:

1. 输出只能包含"是", "否",禁止输出其他内容;

2. 一定要结合历史的问题,与当前问题进行语义层面分析与比较,判断当前问题是否有历史的问题是否在讨论同一个或一组对象,如存在指代消解等;

3. 如果输出为"是",表示当前问题与历史问题存在关联性,则表示二者共同;

4. "q"表示问题,"a"表示输出;

5. 如果当前问题存在"它"或"它们",表示存在指代情况,则输出"是";

6. 如果当前问题没有明确任何询问的对象,表示默认使用历史讨论的对象,输出"是";

7. 如果当前问题存在具体的询问对象,且与历史问题不存在指代问题,则输出"否";

 

 

示例如下:

```

示例

q: 怎么辨认慈母龙

q: 有啥能力?

a: 是

示例

q: 怎么辨认慈母龙

q: 分布在那些地方?

a: 是

示例

q: 怎么辨认慈母龙

q: 海百合是百合么?

a: 否

示例

q: 海百合是百合么?

q: 那它分布在哪里?

a: 是

示例

q: 霸王龙的体长?

q: 梁龙有何生活习性?

a: 否

```

 

现在请根据上述要求及示例,针对以下问题进行关联性分析:

q: {}

q: {}

a:

 

4. 总结

一句话足矣~

本文主要是针对KBQA方案基于LLM实现存在的问题进行优化,主要涉及到响应时间提升优化以及多轮对话效果优化,提供了具体的优化方案以及相应的prompt。

读者可以按照这套方案进行其他KBQA的构建尝试,如有问题,可私信沟通。

 

 

标签:prompt,示例,图谱,KBQA,问题,LLM,慈母,ref
From: https://www.cnblogs.com/mengrennwpu/p/18243718

相关文章

  • LangChain让LLM带上记忆
    最近两年,我们见识了“百模大战”,领略到了大型语言模型(LLM)的风采,但它们也存在一个显著的缺陷:没有记忆。在对话中,无法记住上下文的LLM常常会让用户感到困扰。本文探讨如何利用LangChain,快速为LLM添加记忆能力,提升对话体验。LangChain是LLM应用开发领域的最大社区和最重要......
  • 大模型LLM出现涌现能力的原因介绍
    大模型的涌现能力主要是由以下几个原因造成的:(1)数据量的增加:随着互联网的发展和数字化信息的爆炸增长,可用于训练模型的数据量大大增加。更多的数据可以提供更丰富、更广泛的语言知识和语境,使得模型能够更好地理解和生成文本。(2)计算能力的提升:随着计算硬件的发展,特别是图形......
  • Auto Arena of LLMs: Automating LLM Evaluations with Agent Peer-battles and Commi
    1.引言大语言模型(LLMs)发展迅速,亟需可靠的评估方法。静态数据集存在污染风险,人工评估平台耗时费力。提出自动、可靠、可信的评估框架:Auto-ArenaofLLMs(Auto-Arena)。2.相关工作自动评估方法:静态数据集和基于模型的评估。人工评估平台:ChatbotArena,存在耗时和语言......
  • LLM大模型: llama源码要点解读(一)
    transformer火了之后,基于transformer架构的llama也火了,可能的原因:来自meta,一线互联网大厂,质量有保证;自称70b参数的表现比chatGPT3还好(Llama2:OpenFoundationandFine-TunedChatModels)!可能会成为大模型界的Android:各种基于llama的微调和应用会越来越多(llama的模型......
  • LMDeploy量化部署LLM&VLM实践
    一、前提知识:大模型部署背景:什么是模型部署:部署面临的挑战:受Transformer架构影响:常见GPU算力还能一战,但是显存带宽受限严重,时间花费在数据交换上居多大模型部署方法:模型参数以定点数或整数形式存储,实际计算时,反量化为浮点数去计算,再用定点数和整数去存储计算结......
  • Block Transformer:通过全局到局部的语言建模加速LLM推理
    在基于transformer的自回归语言模型(LMs)中,生成令牌的成本很高,这是因为自注意力机制需要关注所有之前的令牌,通常通过在自回归解码过程中缓存所有令牌的键值(KV)状态来解决这个问题。但是,加载所有先前令牌的KV状态以计算自注意力分数则占据了LMs的推理的大部分成本。在这篇论文中,作者......
  • 知识图谱学习记录(一)
    知识图谱学习记录(一)1.什么是知识图谱?知识图谱是一种用于表示知识的图形化结构,它包含了实体(如人物、地点、事件等)以及这些实体之间的关系。它的目的是将信息组织成易于理解和处理的形式,以便计算机程序能够理解和利用这些信息。知识图谱通常由三部分组成:实体(Entities):代表现实世......
  • 知识图谱的应用---智慧司法
    文章目录智慧司法典型应用智慧司法    智慧司法是综合运用人工智能、大数据、互联网、物联网、云计算等信息技术手段,遵循司法公开、公平、公正的原则,与司法领域业务知识经验深度融合,使司法机关在审判、检查、侦查、监管职能各方面得到全面的智慧提升,实现社会治......
  • 知识图谱应用---智慧医疗
    文章目录智慧医疗典型应用智慧医疗    智慧医疗是利用先进的物联网与移动通信技术、大数据及人工智能等新一代IT技术,实现医疗信息系统与医疗过程的智能化辅助与自动化处理,实现医疗业务流程的数字化运作,实现患者与医务人员、医疗机构、医疗设备之间的互动。短期......
  • 每日AIGC最新进展(21):清华大学提出从人体运动和视频中理解人类行为MotionLLM、武汉大
    DiffusionModels专栏文章汇总:入门与实战MotionLLM:UnderstandingHumanBehaviorsfromHumanMotionsandVideos本研究提出了一种名为MotionLLM的新型框架,旨在通过结合视频和运动序列(如SMPL序列)的多模态数据,利用大型语言模型(LLMs)的能力来理解人类行为。与以往只针对视......