1. 完成 value_iteration 函数, 实现值迭代算法
根据 Bellman 最优方程,我们可以得到如下的公式:
\[V^*(s) = \max_a \sum_{s'} T(s, a, s') [R(s, a, s') + \gamma V^*(s')] = \max_a Q^*(s, a) \]可以将其写成迭代更新的方式
\[V_{k+1}(s) = \max_a \sum_{s'} T(s, a, s') [R(s, a, s') + \gamma V_k(s')] = \max_a Q_k(s, a) \]依据如上的等式,在一次迭代的时候遍历所有的状态,找出每一个状态对应的最大估计 Q 值,然后更新 V 值,直到收敛。最终的不动点对应着最优的 V 值。
def value_iteration(env:GridWorld, gamma=0.9, theta=1e-6):
"""
Value iteration algorithm for solving a given environment.
...
"""
# initialize the value function and policy
V = np.zeros((env.size, env.size))
policy = np.zeros((env.size, env.size), dtype=int)
####
# Implement the value iteration algorithm here
iterations = 0
while True:
updated_V = V.copy()
iterations += 1
for now_state_x in range(env.size):
for now_state_y in range(env.size):
Q_values = []
env.state = (now_state_x, now_state_y)
for action in range(4):
# get s' and reward
next_state, reward = env.step(action=action)
next_state_x, next_state_y = next_state
# calc Q_value
Q_value = reward + gamma * V[next_state_x, next_state_y]
Q_values.append(Q_value)
# reset now_state
env.state = (now_state_x, now_state_y)
# find max Q
max_Q = max(Q_values)
updated_V[now_state_x, now_state_y] = max_Q
policy[now_state_x, now_state_y] = Q_values.index(max_Q)
if np.amax(np.fabs(updated_V - V)) <= theta:
print ('Value-iteration converged at iteration# %d.' %(iterations))
break
else:
V = updated_V
####
env.reset()
return policy
最终结果如下
Value-iteration converged at iteration# 154.
↓ → ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
↓ ↓ → ↓ ↓ ↓ ↓ ↓ ↓ ↓
↓ ↓ ↓ → ↓ ↓ ↓ ↓ ↓ ↓
↓ ↓ ↓ ↓ → ↓ ↓ ↓ ↓ ↓
↓ ↓ ↓ ↓ ↓ → ↓ ↓ ↓ ↓
↓ ↓ ↓ ↓ ↓ ↓ → ↓ ↓ ↓
↓ ↓ ↓ ↓ ↓ ↓ ↓ → ↓ ↓
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ → ↓
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
→ → → → → → → → → ↓
========== SHOW PATH ==========
(0, 0) -> (1, 0) -> (2, 0) -> (3, 0) -> (4, 0) ->
(5, 0) -> (6, 0) -> (7, 0) -> (8, 0) -> (9, 0) ->
(9, 1) -> (9, 2) -> (9, 3) -> (9, 4) -> (9, 5) ->
(9, 6) -> (9, 7) -> (9, 8) -> (9, 9)
========== END PATH ==========
2. 完成 policy_iteration 函数, 实现策略迭代算法
从一个初始化的策略出发,先对当前的策略进行策略评估,然后改进策略,评估改进的策略,再进一步改进策略,经过不断迭代更新,直到策略收敛,这种算法被称为“策略迭代”
- Policy Evaluation
根据 Bellman 期望方程,我们可以得到如下的公式:
\[V_{k+1}(s) = \sum_{a} \pi(a|s) \sum_{s'} T(s, a, s') [R(s, a, s') + \gamma V_k(s')] \]我们可以知道\(V^k =V^\pi\)是一个不动点
当迭代到收敛时,我们可以得到这个策略下的状态值函数
def policy_evaluation(policy:np.ndarray, env:GridWorld, gamma=0.9, theta=1e-6):
"""
Evaluate a policy given an environment.
...
"""
V = np.zeros((env.size, env.size))
####
# Implement the policy evaluation algorithm here
iterations = 0
while True:
iterations += 1
updated_V = V.copy()
for now_state_x in range(env.size):
for now_state_y in range(env.size):
env.state = (now_state_x, now_state_y)
action = policy[now_state_x, now_state_y]
next_state, reward = env.step(action=action)
updated_V[now_state_x, now_state_y] = reward + gamma * V[next_state[0], next_state[1]]
if np.amax(np.fabs(updated_V - V)) <= theta:
V = updated_V
print ('Policy-evaluation converged at iteration# %d.' %(iterations))
break
else:
V = updated_V
####
return V
- Policy Improvement
假设我们在原来的状态价值函数的基础上,对于每一个状态,我们能够找到一个更优的动作\(a\), 使得\(Q^\pi (s, a) \geq V^\pi(s)\),那么能够获得更高的回报
现在如果我们能够找到一个新的策略\(\pi'\),使得\(V^{\pi'}(s) \geq V^\pi(s)\),那么我们就可以得到一个更好的策略
因此我们可以贪心的选择每一个状态动作价值最大的那个动作,也就是
\[\pi'(s) = \arg \max_a Q^\pi(s, a) = \arg \max_a \sum_{s'} T(s, a, s') [R(s, a, s') + \gamma V^\pi(s')] \]def policy_iteration(env:GridWorld, gamma=0.9, theta=1e-6):
"""
Perform policy iteration to find the optimal policy for a given environment.
...
"""
policy = np.zeros((env.size, env.size), dtype=int)
####
# Implement the policy iteration algorithm here
iterations = 0
while True:
iterations += 1
V = policy_evaluation(policy=policy, env=env)
policy_stable = True
for now_state_x in range(env.size):
for now_state_y in range(env.size):
Q_values = []
env.state = (now_state_x, now_state_y)
for action in range(4):
# get s' and reward
next_state, reward = env.step(action=action)
next_state_x, next_state_y = next_state
# calc Q_value
Q_value = reward + gamma * V[next_state_x, next_state_y]
Q_values.append(Q_value)
# reset now_state
env.state = (now_state_x, now_state_y)
# update policy
max_Q = max(Q_values)
now_action = policy[now_state_x, now_state_y]
new_action = Q_values.index(max_Q)
if now_action != new_action:
policy_stable = False
policy[now_state_x, now_state_y] = Q_values.index(max_Q)
if policy_stable:
print ('Policy-iteration converged at iteration# %d.' %(iterations))
break
####
env.reset()
return policy
最终结果如下
Policy-evaluation converged at iteration# 133.
Policy-evaluation converged at iteration# 154.
Policy-evaluation converged at iteration# 154.
Policy-evaluation converged at iteration# 154.
Policy-evaluation converged at iteration# 154.
Policy-evaluation converged at iteration# 154.
Policy-evaluation converged at iteration# 154.
Policy-evaluation converged at iteration# 154.
Policy-evaluation converged at iteration# 154.
Policy-evaluation converged at iteration# 154.
Policy-evaluation converged at iteration# 154.
Policy-evaluation converged at iteration# 154.
Policy-evaluation converged at iteration# 154.
Policy-evaluation converged at iteration# 154.
Policy-evaluation converged at iteration# 154.
Policy-evaluation converged at iteration# 154.
Policy-evaluation converged at iteration# 154.
Policy-evaluation converged at iteration# 154.
Policy-evaluation converged at iteration# 154.
Policy-iteration converged at iteration# 19.
↓ → ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
↓ ↓ → ↓ ↓ ↓ ↓ ↓ ↓ ↓
↓ ↓ ↓ → ↓ ↓ ↓ ↓ ↓ ↓
↓ ↓ ↓ ↓ → ↓ ↓ ↓ ↓ ↓
↓ ↓ ↓ ↓ ↓ → ↓ ↓ ↓ ↓
↓ ↓ ↓ ↓ ↓ ↓ → ↓ ↓ ↓
↓ ↓ ↓ ↓ ↓ ↓ ↓ → ↓ ↓
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ → ↓
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
→ → → → → → → → → ↓
========== SHOW PATH ==========
(0, 0) -> (1, 0) -> (2, 0) -> (3, 0) -> (4, 0) ->
(5, 0) -> (6, 0) -> (7, 0) -> (8, 0) -> (9, 0) ->
(9, 1) -> (9, 2) -> (9, 3) -> (9, 4) -> (9, 5) ->
(9, 6) -> (9, 7) -> (9, 8) -> (9, 9)
========== END PATH ==========
3. 完成 sarsa 和 extract_policy 函数, 实现 Sarsa 算法
一个表格由所有状态和动作组成,表格中的 Q-value 表示在某个状态下采取某个动作的价值,我们可以通过不断的更新这个表格来得到最优的策略
这个表格的值由策略决定,策略变化,表格的值也会变化
\[Q^\pi(s_t, a_t) = \mathbb{E}[R_{t} + \gamma Q^\pi(s_{t+1}, a_{t+1}) | S_t = s_t, A_t = a_t] \]那么左右两边都是可以计算的,并且都是对 Q 值的估计,我们可以通过不断的迭代来更新这个表格
即使用观测到的\(r_t\), \(s_{t+1}\) 以及通过最优策略抽样的出的\(a_{t+1}\),得到\(r_t + \gamma q(s_{t+1}, a_{t+1})\)
采用 TD 的思想,将\(q(s_t, a_t) = (1-\alpha) q(s_t, a_t) + \alpha r_t + \alpha\gamma q(s_{t+1}, a_{t+1})\)
SARSA 用到了五元组\((s_t, a_t, r_t, s_{t+1}, a_{t+1})\),因此我们可以通过不断的迭代来更新这个表格
在采样最佳策略的时候,使用\(\epsilon\)-greedy 策略,即以\(\epsilon\)的概率随机选择动作,以\(1-\epsilon\)的概率选择最优动作
\[a = \begin{cases} \text{random action} & \text{with probability } \epsilon \\ \arg \max_a Q(s, a) & \text{with probability } 1-\epsilon \end{cases} \]def extract_policy(q_table):
"""
Extract the optimal policy from the Q-value table.
...
"""
####
# Implement the function to extract the optimal policy from the Q-value table
policy = np.argmax(q_table, axis=2)
####
return policy
def sarsa(env:GridWorld, episodes=1000, alpha=0.1, gamma=0.9, epsilon=0.1):
"""
SARSA algorithm for training an agent in a given environment.
...
"""
q_table = np.zeros((env.size, env.size, 4))
####
# Implement the SARSA algorithm here
import random
return_list = []
for _ in range(episodes):
x, y = env.start
policy = extract_policy(q_table=q_table)
action = policy[x, y]
# 抽样
if random.uniform(0, 1) <= epsilon:
action = random.randint(0, 3)
episode_return = 0
while True:
policy = extract_policy(q_table=q_table)
env.state = (x, y)
new_state, reward = env.step(action=action)
episode_return += reward
new_action = policy[new_state[0], new_state[1]]
if random.uniform(0, 1) <= epsilon:
new_action = random.randint(0, 3)
q_table[x, y, action] += alpha * (reward + gamma * q_table[new_state[0], new_state[1], new_action] - q_table[x, y, action])
x, y = new_state
action = new_action
if new_state == (9, 9):
break
return_list.append(episode_return)
####
# plot the return
import matplotlib.pyplot as plt
plt.scatter(range(episodes), return_list)
plt.xlabel('Episodes')
plt.ylabel('Returns')
plt.show()
env.reset()
return q_table
最终实验结果如下
↓ → ↓ ↓ → → → ↓ ↓ ←
↓ ↑ → → ↓ ↓ → ↓ ↓ ↓
→ ↓ ↑ → → → ↓ → ↓ ↓
↓ ↓ ↓ ↑ → → ↓ → ↓ ↓
↓ ↓ ↓ ↓ ↑ → → → → ↓
→ ↓ ↓ ↓ ↓ ↑ → → → ↓
→ → → ↓ ↓ ↓ ↑ → → ↓
→ → → → ↓ ↓ ↓ ↑ → ↓
→ → → → ↓ → ↓ ↓ ↑ ↓
→ → → → → → → → → ↑
========== SHOW PATH ==========
(0, 0) -> (1, 0) -> (2, 0) -> (2, 1) -> (3, 1) ->
(4, 1) -> (5, 1) -> (6, 1) -> (6, 2) -> (6, 3) ->
(7, 3) -> (7, 4) -> (8, 4) -> (9, 4) -> (9, 5) ->
(9, 6) -> (9, 7) -> (9, 8) -> (9, 9)
========== END PATH ==========
4. 完成 q_learning 函数, 实现 Q-learning 算法
Q-Learning 是一种无模型的学习方法,它不需要环境的转移概率,只需要环境的奖励即可
基于 TD 的思想,我们可以通过不断的迭代来更新 Q 值
\[Q^*(s_t, a_t) = \mathbb{E}[r_t + \gamma \max_{a'} Q^*(s_{t+1}, a') | S_t = s_t, A_t = a_t] \]\[Q(s_t, a_t) = (1-\alpha) Q(s_t, a_t) + \alpha [r_t + \gamma \max_{a'} Q(s_{t+1}, a')] \]与 SARSA 类似,我们先通过\(\epsilon\)-greedy 策略抽样,然后更新 Q 值
def q_learning(env:GridWorld, episodes=1000, alpha=0.1, gamma=0.9, epsilon=0.1):
"""
Q-learning algorithm for training an agent in a given environment.
...
"""
q_table = np.zeros((env.size, env.size, 4))
####
# Implement the Q-learning algorithm here
return_list = []
for _ in range(episodes):
x, y = env.start
episode_return = 0
while True:
policy = extract_policy(q_table=q_table)
action = policy[x, y]
if random.uniform(0,1) <= epsilon:
action = random.randint(0,3)
env.state = (x, y)
new_state, reward = env.step(action=action)
episode_return += reward
q_table[x, y, action] += alpha * (reward + gamma *
np.amax(q_table[new_state[0], new_state[1]]) - q_table[x, y, action])
x, y = new_state
if new_state == env.goal:
break
return_list.append(episode_return)
####
import matplotlib.pyplot as plt
plt.scatter(range(episodes), return_list)
plt.xlabel('Episodes')
plt.ylabel('Returns')
plt.show()
env.reset()
return q_table
最终实验结果如下:
→ → → → → ↓ ↓ → ↓ ↑
↓ ↑ → → → ↓ ↓ ↓ ↓ ↓
↓ ↓ ↑ → → → ↓ ↓ ↓ ↓
↓ ↓ ↓ ↑ → → ↓ ↓ ↓ ↓
↓ ↓ ↓ ↓ ↑ → → → ↓ ↓
→ → → ↓ ↓ ↑ → → → ↓
→ → → → ↓ ↓ ↑ → → ↓
→ → → → ↓ ↓ ↓ ↑ → ↓
↑ → → → ↓ ↓ ↓ ↓ ↑ ↓
→ → → → → → → → → ↑
========== SHOW PATH ==========
(0, 0) -> (0, 1) -> (0, 2) -> (0, 3) -> (0, 4) ->
(0, 5) -> (1, 5) -> (2, 5) -> (2, 6) -> (3, 6) ->
(4, 6) -> (4, 7) -> (4, 8) -> (5, 8) -> (5, 9) ->
(6, 9) -> (7, 9) -> (8, 9) -> (9, 9)
========== END PATH ==========
5. 结合上课所学的内容、代码实现和实验结果,分析上述四种方法的异同和优劣
相同
从模型角度(是否提供转移概率),可以从迭代公式中看出
- 有模型算法:值迭代和策略迭代
- 无模型算法:sarsa 和 q learning 算法
有模型算法能够从期望的角度计算值函数,均属于动态规划算法
于是无模型算法实际不能从期望角度来计算值函数,只能从采样的算法,而 sarsa 和 q learning 都是基于时序差分的算法来迭代
不同
对于有模型算法
- 值迭代:他是对应于每一次在当前步对最优价值函数进行估计
- 策略迭代:他对应于每一次在当前步对给定策略的价值函数进行估计,并通过贪心寻找每一个状态的最优策略
对于无模型算法
- sarsa:对当前策略的动作-状态价值函数进行估计,通过 TD 方法
- q learning:对最优的动作-状态价值函数进行估计,通过 TD 方法
优劣
- 策略迭代
优势: 能够收敛至全局最优解,收敛速度快
劣势: 每一次迭代都需要对所有的状态进行评估,且策略改变的时候,需要重新评估,计算量较大,从实验结果中可以看出
Policy-evaluation converged at iteration# 133.
Policy-evaluation converged at iteration# 154.
Policy-evaluation converged at iteration# 154.
Policy-evaluation converged at iteration# 154.
Policy-evaluation converged at iteration# 154.
Policy-evaluation converged at iteration# 154.
Policy-evaluation converged at iteration# 154.
Policy-evaluation converged at iteration# 154.
Policy-evaluation converged at iteration# 154.
Policy-evaluation converged at iteration# 154.
Policy-evaluation converged at iteration# 154.
Policy-evaluation converged at iteration# 154.
Policy-evaluation converged at iteration# 154.
Policy-evaluation converged at iteration# 154.
Policy-evaluation converged at iteration# 154.
Policy-evaluation converged at iteration# 154.
Policy-evaluation converged at iteration# 154.
Policy-evaluation converged at iteration# 154.
Policy-evaluation converged at iteration# 154.
Policy-iteration converged at iteration# 19.
-
值迭代
优势: 每一次迭代只需要对所有的状态进行评估,不需要对策略进行评估,计算量较小,能收敛至全局最优解
劣势: 对于迭代收敛速度而言,可能会比策略迭代慢一些
Value-iteration converged at iteration# 154.
-
sarsa
优势:在线学习算法,能处理环境动态变化,通过实际交互数据更新策略,收敛稳定
劣势:收敛速度较慢,需要大量的采样,同时可能收敛至局部最优解 -
q learning
优势:适用于复杂环境,能处理大量状态和动作组合,更新过程简单
劣势:需要大量的探索才能收敛,对参数选择敏感,初期表现不佳,对噪声和不稳定环境敏感,可能导致收敛问题
小结
值迭代和策略迭代得到的路径较一致,说明它们都能找到全局最优解。
SARSA 和 Q-learning 的路径相似,但因其在线学习特性,路径可能有波动。
SARSA 和 Q-learning 在初期表现不佳,但随着迭代次数增加,最终也能接近最优策略。