首页 > 其他分享 >Xinhui学习NLP的笔记本:基于MLP/CNN的姓氏分类系统

Xinhui学习NLP的笔记本:基于MLP/CNN的姓氏分类系统

时间:2024-06-09 18:30:16浏览次数:23  
标签:NLP surname Xinhui index self MLP train size vectorizer

A Surname Classification System based on MLP

基于MLP的姓氏分类系统

This notebook serves as my learning journey into the Multilayer Perceptron (MLP), which is a fundamental type of Feedforward Neural Network. Throughout this article, I will be undertaking the following tasks and documenting my learning process:

  • Master the Application of Multi-layer Perceptron in Multi-class Classification:

    • Using the example of “Surname Classification with Multi-layer Perceptron” to understand the practical implementation.
  • Understand the Impact of Different Neural Network Layers:

    • Analyzing how each type of neural network layer affects the size and shape of the data tensors it processes.
  • Experiment with the SurnameClassifier Model:

    • Introducing dropout into the model and observing the changes in the results.

In addition to these tasks, I will also attempt to explain some of the challenges I encountered and clarify the underlying principles as best as I can. Even though my English is not such good, I choose English to be my article’s language, so that I can improve my English.

0 说明

本博客最开始作为笔者一次课程实验的汇报成果而开始写作,能力和精力实在有限,文章质量欠佳,后续笔者会更新更加实用有料的博客,欢迎关注。各位大佬轻喷。博客使用英文写作,原因一笔者最近在学习英语,希望创造一些练习的机会;原因二是在课程实验实施的环境中,使用中文模式无法使用一些快捷键。在完成实验的前提下,我还尽我所能阐述了必要原理,并黏贴了一些我所参考或推荐的网址。下面,正文开始!

1 Look into MLP

1.1 Perceptron (which we learnt in Lab1)

The perceptron is a fundamental building block of neural networks. It’s a type of artificial neuron that can perform binary classifications. The perceptron takes a set of inputs, applies weights to them, sums them up, and passes the result through an activation function to produce an output.

Here’s a simple diagram of a perceptron:

  x1 ---- w1
         \
  x2 ---- w2
          \
  x3 ---- w3   ----> Σ (sum) ----> Activation Function ----> Output
          /
  ... ----
         /
  xn ---- wn

1.2 How a Perceptron Works

  1. Inputs: Each input ( x 1 , x 2 , . . . , x n ) ( x_1, x_2, ..., x_n) (x1​,x2​,...,xn​) represents a feature of the data.
  2. Weights: Each input has an associated weight ( w 1 , w 2 , . . . , w n ) ( w_1, w_2, ..., w_n) (w1​,w2​,...,wn​). These weights are learned during the training process.
  3. Summation: The perceptron computes a weighted sum of the inputs:
    z = ∑ i = 1 n w i x i + b z = \sum_{i=1}^{n} w_i x_i + b z=i=1∑n​wi​xi​+b
    where $ b $ is the bias term.
  4. Activation Function: The summation result $ z $ is then passed through an activation function & f &. For a simple perceptron, a common choice is the step function:

f ( x ) = { 1 if  z ≥ 0 0 if  z < 0 f(x)= \begin{cases} 1 & \text{if } z \ge 0 \\ 0 & \text{if } z < 0 \end{cases} f(x)={10​if z≥0if z<0​

The activation function determines the perceptron’s output, which is typically binary (0 or 1).

It can be mathematically represented as:

y ^ = f ( ∑ i = 1 n w i x i + b ) \hat{y} = f\left(\sum_{i=1}^{n} w_i x_i + b\right) y^​=f(i=1∑n​wi​xi​+b)

where y ^ \hat{y} y^​ is the predicted output, $ x_i $ are the input features, $ w_i$are the weights, $ b $ is the bias term and $ f $ is the activation function.

在这里插入图片描述

Consider a simple binary classification problem where we want to determine if an email is spam (1) or not spam (0). The perceptron takes features of the email as inputs (e.g., presence of certain keywords, length of the email, etc.), computes the weighted sum, applies the activation function, and produces the output: spam or not spam. Of course, due to the structure is to simple, the result may not be such good. There’s a article by Medium which’s far more good than my arcticle, and this is its link: https://towardsdatascience.com/what-the-hell-is-perceptron-626217814f53

1.3 Drawbacks of the Perceptron

While the perceptron is a fundamental concept in neural networks, it has some significant limitations:

  1. Linear Separability: The perceptron can only solve problems that are linearly separable. This means it can only classify data points that can be separated by a straight line (in two dimensions), a plane (in three dimensions), or a hyperplane (in higher dimensions). For example, the XOR problem, which is not linearly separable, cannot be solved by a single perceptron.

  2. Limited Expressiveness: Because it only involves a single layer of computation, a single-layer perceptron cannot capture complex patterns or relationships in the data. It lacks the ability to learn higher-order features.

1.4 How MLP Solves These Drawbacks

The Multilayer Perceptron (MLP), also known as a Feedforward Neural Network, addresses these drawbacks by introducing multiple layers of neurons. Here’s how MLP overcomes the limitations of a single-layer perceptron:

  1. Non-linear Activation Functions: MLPs use non-linear activation functions (such as ReLU, sigmoid, or tanh) in hidden layers. These non-linearities allow the network to learn complex, non-linear relationships between the input and output.

  2. Multiple Layers (Hidden Layers): By stacking multiple layers of neurons (hidden layers) between the input and output layers, MLPs can learn hierarchical representations of the data. Each layer captures different levels of abstraction:

    • First Layer: Captures simple patterns or features.
    • Subsequent Layers: Combine these simple patterns to capture more complex features.
  3. Universal Approximation: An MLP with at least one hidden layer and non-linear activation functions can approximate any continuous function to any desired degree of accuracy, given sufficient neurons in the hidden layer. This is known as the Universal Approximation Theorem.

1.5 Architecture of an MLP

An MLP consists of an input layer, one or more hidden layers, and an output layer:

Input Layer  -->  Hidden Layer(s)  -->  Output Layer
  x1  x2        h1  h2  h3           y1  y2
   \  /          \  /  /             \  /
    h1            h1  h2  ...         h1  h2  ...
   /  \          /  /  \             /  /
  o1  o2        o1  o2  o3          o1  o2

The XOR problem is a classic example that a single-layer perceptron cannot solve because the data points are not linearly separable. However, an MLP with one hidden layer can solve the XOR problem.

While the perceptron is limited to solving only linearly separable problems, the MLP overcomes these limitations through its layered architecture and non-linear activation functions. This allows MLPs to learn and approximate complex, non-linear functions, making them much more powerful and versatile for a wide range of classification and regression tasks.

For instance, MLP model can solve the problems below whereas Percertron can’t.

2 Implementing MLPs in PyTorch

This section serves as a guide to getting started with MLP using PyTorch, a machine learning library based on the Torch library. PyTorch is widely recognized as one of the two most popular machine learning libraries, alongside TensorFlow. It offers free and open-source software released under the modified BSD license. According to our professor, PyTorch is currently prevailing in the field. In this part, I will focus more on providing code examples rather than extensive explanations.

# import package
import torch.nn as nn
import torch.nn.functional as F

class MultilayerPerceptron(nn.Module):
    def __init__(self, input_dim, hidden_dim, output_dim):
        """
        Args:
            input_dim (int): the size of the input vectors
            hidden_dim (int): the output size of the first Linear layer
            output_dim (int): the output size of the second Linear layer
        """
        super(MultilayerPerceptron, self).__init__()
        self.fc1 = nn.Linear(input_dim, hidden_dim)
        self.fc2 = nn.Linear(hidden_dim, output_dim)

    def forward(self, x_in, apply_softmax=False):
        """The forward pass of the MLP

        Args:
            x_in (torch.Tensor): an input data tensor.
                x_in.shape should be (batch, input_dim)
            apply_softmax (bool): a flag for the softmax activation
                should be false if used with the Cross Entropy losses
        Returns:
            the resulting tensor. tensor.shape should be (batch, output_dim)
        """
        intermediate = F.relu(self.fc1(x_in))
        output = self.fc2(intermediate)

        if apply_softmax:
            output = F.softmax(output, dim=1)
        return output

Let’s take a example:

batch_size = 2 # number of samples input at once
input_dim = 3 
hidden_dim = 100 
output_dim = 4

# Initialize model
mlp = MultilayerPerceptron(input_dim, hidden_dim, output_dim)
print(mlp)
MultilayerPerceptron(
  (fc1): Linear(in_features=3, out_features=100, bias=True)
  (fc2): Linear(in_features=100, out_features=4, bias=True)
)

Through the output, we can tell the MLP implemention by PuTorch consists of 2 fully connected layers: the first layer takes a 3-dimensional input and produces a 100-dimensional output, while the second layer takes this 100-dimensional input and generates a 4-dimensional output, representing the number of classification classes.

import torch # dl
def describe(x):
    """
    This function is used to describe tensor
    """
    print("Type: {}".format(x.type()))
    print("Shape/size: {}".format(x.shape))
    print("Values: \n{}".format(x))

x_input = torch.rand(batch_size, input_dim)
describe(x_input)
Type: torch.FloatTensor
Shape/size: torch.Size([2, 3])
Values: 
tensor([[0.4838, 0.0619, 0.5794],
        [0.9018, 0.9110, 0.3688]])

Let’s put the tensor x into our MLP model and see what’ll happen.

y_output = mlp(x_input, apply_softmax=False)
describe(y_output)
Type: torch.FloatTensor
Shape/size: torch.Size([2, 4])
Values: 
tensor([[-0.3002, -0.0441, -0.0726, -0.1772],
        [-0.3877,  0.1662,  0.0653,  0.0621]], grad_fn=<AddmmBackward>)

We can conclude:

MLPs are linear layers that transform tensors into other tensors. Nonlinearities are incorporated between each pair of linear layers to introduce nonlinearity and enable the model to deform the vector space. In a classification scenario, this deformation should result in linear separability among classes. Alternatively, an MLP’s outputs can be interpreted as probabilities using a softmax function; however, it is not advisable to combine softmax with a specific loss function due to potential exploitation of advanced mathematical/computational shortcuts.

3 Our Project:Surname Classification with a MLP

In this section the MLP model will be implemented to predict an individual’s nationality based on their surname using The Surname Dataset.

3.1 About The Surname Dataset

The Surname dataset, which collects 10,000 surnames from 18 different countries, collected by the authors from different sources of names on the Internet. The first feature is that it is rather unbalanced. The second feature is that there is a valid and intuitive relationship between nationality and last name orthography. Some spelling variants are very strongly linked to the country of origin.

First, we will munging the dataset.

import collections
import numpy as np
import pandas as pd
import re

from argparse import Namespace

args = Namespace(
    raw_dataset_csv="surnames.csv",
    train_proportion=0.7,
    val_proportion=0.15,
    test_proportion=0.15,
    output_munged_csv="surnames_with_splits.csv",
    seed=1337
)

# Read raw data
surnames = pd.read_csv(args.raw_dataset_csv, header=0)

surnames.head()
surnamenationality
0WoodfordEnglish
1CotéFrench
2KoreEnglish
3KouryArabic
4LebzakRussian

The raw data’s header is shown above.

# Unique classes
set(surnames.nationality)
{'Arabic',
 'Chinese',
 'Czech',
 'Dutch',
 'English',
 'French',
 'German',
 'Greek',
 'Irish',
 'Italian',
 'Japanese',
 'Korean',
 'Polish',
 'Portuguese',
 'Russian',
 'Scottish',
 'Spanish',
 'Vietnamese'}

The countries/regions are shown above.

# Splitting train by nationality
# Create dict
by_nationality = collections.defaultdict(list)
for _, row in surnames.iterrows():
    by_nationality[row.nationality].append(row.to_dict())
    
# Create split data
final_list = []
np.random.seed(args.seed)
for _, item_list in sorted(by_nationality.items()):
    np.random.shuffle(item_list)
    n = len(item_list)
    n_train = int(args.train_proportion*n)
    n_val = int(args.val_proportion*n)
    n_test = int(args.test_proportion*n)
    
    # Give data point a split attribute
    for item in item_list[:n_train]:
        item['split'] = 'train'
    for item in item_list[n_train:n_train+n_val]:
        item['split'] = 'val'
    for item in item_list[n_train+n_val:]:
        item['split'] = 'test'  
    
    # Add to final list
    final_list.extend(item_list)
    
# Write split data to file
final_surnames = pd.DataFrame(final_list)
final_surnames.split.value_counts()
train    7680
test     1660
val      1640
Name: split, dtype: int64
# Write munged data to CSV
final_surnames.to_csv(args.output_munged_csv, index=False)

Now we have got the splited dataset by Nationality.

3.2 Vocabulary, Vectorizer, and DataLoader

To classify surnames using characters, we convert surname strings into vectorized minibatches using a vocabulary, a vectorizer, and a DataLoader.

3.2.1 The Vocabulary Class

The Vocabulary class is a utility for handling text data in NLP tasks. It manages the mapping between tokens and indices, handles unknown tokens, and supports serialization and deserialization for saving and loading the vocabulary. This class is essential for converting text data into a numerical format suitable for machine learning models.

# import package
from argparse import Namespace
from collections import Counter
import json
import os
import string

import numpy as np
import pandas as pd

import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torch.utils.data import Dataset, DataLoader
from tqdm import tqdm_notebook
class Vocabulary(object):
    """Class to process text and extract vocabulary for mapping"""

    def __init__(self, token_to_idx=None, add_unk=True, unk_token="<UNK>"):
        """
        Args:
            token_to_idx (dict): a pre-existing map of tokens to indices
            add_unk (bool): a flag that indicates whether to add the UNK token
            unk_token (str): the UNK token to add into the Vocabulary
        """

        if token_to_idx is None:
            token_to_idx = {}
        self._token_to_idx = token_to_idx

        self._idx_to_token = {idx: token 
                              for token, idx in self._token_to_idx.items()}
        
        self._add_unk = add_unk
        self._unk_token = unk_token
        
        self.unk_index = -1
        if add_unk:
            self.unk_index = self.add_token(unk_token) 
        
        
    def to_serializable(self):
        """ returns a dictionary that can be serialized """
        return {'token_to_idx': self._token_to_idx, 
                'add_unk': self._add_unk, 
                'unk_token': self._unk_token}

    @classmethod
    def from_serializable(cls, contents):
        """ instantiates the Vocabulary from a serialized dictionary """
        return cls(**contents)

    def add_token(self, token):
        """Update mapping dicts based on the token.

        Args:
            token (str): the item to add into the Vocabulary
        Returns:
            index (int): the integer corresponding to the token
        """
        try:
            index = self._token_to_idx[token]
        except KeyError:
            index = len(self._token_to_idx)
            self._token_to_idx[token] = index
            self._idx_to_token[index] = token
        return index
    
    def add_many(self, tokens):
        """Add a list of tokens into the Vocabulary
        
        Args:
            tokens (list): a list of string tokens
        Returns:
            indices (list): a list of indices corresponding to the tokens
        """
        return [self.add_token(token) for token in tokens]

    def lookup_token(self, token):
        """Retrieve the index associated with the token 
          or the UNK index if token isn't present.
        
        Args:
            token (str): the token to look up 
        Returns:
            index (int): the index corresponding to the token
        Notes:
            `unk_index` needs to be >=0 (having been added into the Vocabulary) 
              for the UNK functionality 
        """
        if self.unk_index >= 0:
            return self._token_to_idx.get(token, self.unk_index)
        else:
            return self._token_to_idx[token]

    def lookup_index(self, index):
        """Return the token associated with the index
        
        Args: 
            index (int): the index to look up
        Returns:
            token (str): the token corresponding to the index
        Raises:
            KeyError: if the index is not in the Vocabulary
        """
        if index not in self._idx_to_token:
            raise KeyError("the index (%d) is not in the Vocabulary" % index)
        return self._idx_to_token[index]

    def __str__(self):
        return "<Vocabulary(size=%d)>" % len(self)

    def __len__(self):
        return len(self._token_to_idx)
3.2.2 THE SURNAME VECTORIZER

The SurnameVectorizer class is designed to handle the conversion of surnames and nationalities into numerical formats suitable for machine learning models. It coordinates two Vocabulary instances:

  • One for converting surname characters into indices.
  • One for converting nationalities into indices.

The vectorize method converts surnames into one-hot encoded vectors, making them ready for model input. The class methods from_dataframe and from_serializable provide ways to create a SurnameVectorizer from a pandas DataFrame and a serialized dictionary, respectively. The to_serializable method allows the SurnameVectorizer to be easily saved and loaded.

class SurnameVectorizer(object):
    """ The Vectorizer which coordinates the Vocabularies and puts them to use"""
    def __init__(self, surname_vocab, nationality_vocab):
        """
        Args:
            surname_vocab (Vocabulary): maps characters to integers
            nationality_vocab (Vocabulary): maps nationalities to integers
        """
        self.surname_vocab = surname_vocab
        self.nationality_vocab = nationality_vocab

    def vectorize(self, surname):
        """
        Args:
            surname (str): the surname

        Returns:
            one_hot (np.ndarray): a collapsed one-hot encoding 
        """
        vocab = self.surname_vocab
        one_hot = np.zeros(len(vocab), dtype=np.float32)
        for token in surname:
            one_hot[vocab.lookup_token(token)] = 1

        return one_hot

    @classmethod
    def from_dataframe(cls, surname_df):
        """Instantiate the vectorizer from the dataset dataframe
        
        Args:
            surname_df (pandas.DataFrame): the surnames dataset
        Returns:
            an instance of the SurnameVectorizer
        """
        surname_vocab = Vocabulary(unk_token="@")
        nationality_vocab = Vocabulary(add_unk=False)

        for index, row in surname_df.iterrows():
            for letter in row.surname:
                surname_vocab.add_token(letter)
            nationality_vocab.add_token(row.nationality)

        return cls(surname_vocab, nationality_vocab)

    @classmethod
    def from_serializable(cls, contents):
        surname_vocab = Vocabulary.from_serializable(contents['surname_vocab'])
        nationality_vocab =  Vocabulary.from_serializable(contents['nationality_vocab'])
        return cls(surname_vocab=surname_vocab, nationality_vocab=nationality_vocab)

    def to_serializable(self):
        return {'surname_vocab': self.surname_vocab.to_serializable(),
                'nationality_vocab': self.nationality_vocab.to_serializable()}

3.3 Load the dataset

class SurnameDataset(Dataset):
    def __init__(self, surname_df, vectorizer):
        """
        Args:
            surname_df (pandas.DataFrame): the dataset
            vectorizer (SurnameVectorizer): vectorizer instatiated from dataset
        """
        self.surname_df = surname_df
        self._vectorizer = vectorizer

        self.train_df = self.surname_df[self.surname_df.split=='train']
        self.train_size = len(self.train_df)

        self.val_df = self.surname_df[self.surname_df.split=='val']
        self.validation_size = len(self.val_df)

        self.test_df = self.surname_df[self.surname_df.split=='test']
        self.test_size = len(self.test_df)

        self._lookup_dict = {'train': (self.train_df, self.train_size),
                             'val': (self.val_df, self.validation_size),
                             'test': (self.test_df, self.test_size)}

        self.set_split('train')
        
        # Class weights
        class_counts = surname_df.nationality.value_counts().to_dict()
        def sort_key(item):
            return self._vectorizer.nationality_vocab.lookup_token(item[0])
        sorted_counts = sorted(class_counts.items(), key=sort_key)
        frequencies = [count for _, count in sorted_counts]
        self.class_weights = 1.0 / torch.tensor(frequencies, dtype=torch.float32)

    @classmethod
    def load_dataset_and_make_vectorizer(cls, surname_csv):
        """Load dataset and make a new vectorizer from scratch
        
        Args:
            surname_csv (str): location of the dataset
        Returns:
            an instance of SurnameDataset
        """
        surname_df = pd.read_csv(surname_csv)
        train_surname_df = surname_df[surname_df.split=='train']
        return cls(surname_df, SurnameVectorizer.from_dataframe(train_surname_df))

    @classmethod
    def load_dataset_and_load_vectorizer(cls, surname_csv, vectorizer_filepath):
        """Load dataset and the corresponding vectorizer. 
        Used in the case in the vectorizer has been cached for re-use
        
        Args:
            surname_csv (str): location of the dataset
            vectorizer_filepath (str): location of the saved vectorizer
        Returns:
            an instance of SurnameDataset
        """
        surname_df = pd.read_csv(surname_csv)
        vectorizer = cls.load_vectorizer_only(vectorizer_filepath)
        return cls(surname_df, vectorizer)

    @staticmethod
    def load_vectorizer_only(vectorizer_filepath):
        """a static method for loading the vectorizer from file
        
        Args:
            vectorizer_filepath (str): the location of the serialized vectorizer
        Returns:
            an instance of SurnameVectorizer
        """
        with open(vectorizer_filepath) as fp:
            return SurnameVectorizer.from_serializable(json.load(fp))

    def save_vectorizer(self, vectorizer_filepath):
        """saves the vectorizer to disk using json
        
        Args:
            vectorizer_filepath (str): the location to save the vectorizer
        """
        with open(vectorizer_filepath, "w") as fp:
            json.dump(self._vectorizer.to_serializable(), fp)

    def get_vectorizer(self):
        """ returns the vectorizer """
        return self._vectorizer

    def set_split(self, split="train"):
        """ selects the splits in the dataset using a column in the dataframe """
        self._target_split = split
        self._target_df, self._target_size = self._lookup_dict[split]

    def __len__(self):
        return self._target_size

    def __getitem__(self, index):
        """the primary entry point method for PyTorch datasets
        
        Args:
            index (int): the index to the data point 
        Returns:
            a dictionary holding the data point's:
                features (x_surname)
                label (y_nationality)
        """
        row = self._target_df.iloc[index]

        surname_vector = \
            self._vectorizer.vectorize(row.surname)

        nationality_index = \
            self._vectorizer.nationality_vocab.lookup_token(row.nationality)

        return {'x_surname': surname_vector,
                'y_nationality': nationality_index}

    def get_num_batches(self, batch_size):
        """Given a batch size, return the number of batches in the dataset
        
        Args:
            batch_size (int)
        Returns:
            number of batches in the dataset
        """
        return len(self) // batch_size

    
def generate_batches(dataset, batch_size, shuffle=True,
                     drop_last=True, device="cpu"): 
    """
    A generator function which wraps the PyTorch DataLoader. It will 
      ensure each tensor is on the write device location.
    """
    dataloader = DataLoader(dataset=dataset, batch_size=batch_size,
                            shuffle=shuffle, drop_last=drop_last)

    for data_dict in dataloader:
        out_data_dict = {}
        for name, tensor in data_dict.items():
            out_data_dict[name] = data_dict[name].to(device)
        yield out_data_dict

3.4 The Model: Surname Classifier

In this Section, I will design a MLP network, to do the classification work above.

class SurnameClassifier(nn.Module):
    """ A 2-layer Multilayer Perceptron for classifying surnames """
    def __init__(self, input_dim, hidden_dim, output_dim):
        """
        Args:
            input_dim (int): the size of the input vectors
            hidden_dim (int): the output size of the first Linear layer
            output_dim (int): the output size of the second Linear layer
        """
        super(SurnameClassifier, self).__init__()
        self.fc1 = nn.Linear(input_dim, hidden_dim)
        self.fc2 = nn.Linear(hidden_dim, output_dim)

    def forward(self, x_in, apply_softmax=False):
        """The forward pass of the classifier
        
        Args:
            x_in (torch.Tensor): an input data tensor. 
                x_in.shape should be (batch, input_dim)
            apply_softmax (bool): a flag for the softmax activation
                should be false if used with the Cross Entropy losses
        Returns:
            the resulting tensor. tensor.shape should be (batch, output_dim)
        """
        intermediate_vector = F.relu(self.fc1(x_in))
        prediction_vector = self.fc2(intermediate_vector)

        if apply_softmax:
            prediction_vector = F.softmax(prediction_vector, dim=1)

        return prediction_vector
def make_train_state(args):
    return {'stop_early': False,
            'early_stopping_step': 0,
            'early_stopping_best_val': 1e8,
            'learning_rate': args.learning_rate,
            'epoch_index': 0,
            'train_loss': [],
            'train_acc': [],
            'val_loss': [],
            'val_acc': [],
            'test_loss': -1,
            'test_acc': -1,
            'model_filename': args.model_state_file}

def update_train_state(args, model, train_state):
    """Handle the training state updates.

    Components:
     - Early Stopping: Prevent overfitting.
     - Model Checkpoint: Model is saved if the model is better

    :param args: main arguments
    :param model: model to train
    :param train_state: a dictionary representing the training state values
    :returns:
        a new train_state
    """

    # Save one model at least
    if train_state['epoch_index'] == 0:
        torch.save(model.state_dict(), train_state['model_filename'])
        train_state['stop_early'] = False

    # Save model if performance improved
    elif train_state['epoch_index'] >= 1:
        loss_tm1, loss_t = train_state['val_loss'][-2:]

        # If loss worsened
        if loss_t >= train_state['early_stopping_best_val']:
            # Update step
            train_state['early_stopping_step'] += 1
        # Loss decreased
        else:
            # Save the best model
            if loss_t < train_state['early_stopping_best_val']:
                torch.save(model.state_dict(), train_state['model_filename'])

            # Reset early stopping step
            train_state['early_stopping_step'] = 0

        # Stop early ?
        train_state['stop_early'] = \
            train_state['early_stopping_step'] >= args.early_stopping_criteria

    return train_state

def compute_accuracy(y_pred, y_target):
    _, y_pred_indices = y_pred.max(dim=1)
    n_correct = torch.eq(y_pred_indices, y_target).sum().item()
    return n_correct / len(y_pred_indices) * 100
def set_seed_everywhere(seed, cuda):
    np.random.seed(seed)
    torch.manual_seed(seed)
    if cuda:
        torch.cuda.manual_seed_all(seed)

def handle_dirs(dirpath):
    if not os.path.exists(dirpath):
        os.makedirs(dirpath)
args = Namespace(
    # Data and path information
    surname_csv="=surnames_with_splits.csv",
    vectorizer_file="vectorizer.json",
    model_state_file="model.pth",
    save_dir="surname_mlp",
    # Model hyper parameters
    hidden_dim=300,
    # Training  hyper parameters
    seed=1337,
    num_epochs=100,
    early_stopping_criteria=5,
    learning_rate=0.001,
    batch_size=64,
    # Runtime options
    cuda=False,
    reload_from_files=False,
    expand_filepaths_to_save_dir=True,
)

if args.expand_filepaths_to_save_dir:
    args.vectorizer_file = os.path.join(args.save_dir,
                                        args.vectorizer_file)

    args.model_state_file = os.path.join(args.save_dir,
                                         args.model_state_file)
    
    print("Expanded filepaths: ")
    print("\t{}".format(args.vectorizer_file))
    print("\t{}".format(args.model_state_file))
    
# Check CUDA
if not torch.cuda.is_available():
    args.cuda = False

args.device = torch.device("cuda" if args.cuda else "cpu")
    
print("Using CUDA: {}".format(args.cuda))


# Set seed for reproducibility
set_seed_everywhere(args.seed, args.cuda)

# handle dirs
handle_dirs(args.save_dir)
Expanded filepaths: 
	surname_mlp/vectorizer.json
	surname_mlp/model.pth
Using CUDA: False

It’s clear that we don’t have any GPU to use.

args = Namespace(
    # Data and path information
    surname_csv="surnames_with_splits.csv",
    vectorizer_file="vectorizer.json",
    model_state_file="model.pth",
    save_dir="model_storage/ch4/surname_mlp",
    # Model hyper parameters
    hidden_dim=300,
    # Training  hyper parameters
    seed=1337,
    num_epochs=100,
    early_stopping_criteria=5,
    learning_rate=0.001,
    batch_size=64,
    # Runtime options
    cuda=False,
    reload_from_files=False,
    expand_filepaths_to_save_dir=True,
)

if args.expand_filepaths_to_save_dir:
    args.vectorizer_file = os.path.join(args.save_dir,
                                        args.vectorizer_file)

    args.model_state_file = os.path.join(args.save_dir,
                                         args.model_state_file)
    
    print("Expanded filepaths: ")
    print("\t{}".format(args.vectorizer_file))
    print("\t{}".format(args.model_state_file))
    
# Check CUDA
if not torch.cuda.is_available():
    args.cuda = False

args.device = torch.device("cuda" if args.cuda else "cpu")
    
print("Using CUDA: {}".format(args.cuda))


# Set seed for reproducibility
set_seed_everywhere(args.seed, args.cuda)

# handle dirs
handle_dirs(args.save_dir)
Expanded filepaths: 
	model_storage/ch4/surname_mlp/vectorizer.json
	model_storage/ch4/surname_mlp/model.pth
Using CUDA: False
dataset = SurnameDataset.load_dataset_and_make_vectorizer(args.surname_csv)
vectorizer = dataset.get_vectorizer()

classifier = SurnameClassifier(input_dim=len(vectorizer.surname_vocab),
                               hidden_dim=args.hidden_dim,
                               output_dim=len(vectorizer.nationality_vocab))

classifier = classifier.to(args.device)    

loss_func = nn.CrossEntropyLoss(dataset.class_weights)
optimizer = optim.Adam(classifier.parameters(), lr=args.learning_rate)

classifier = classifier.to(args.device)
dataset.class_weights = dataset.class_weights.to(args.device)

    
loss_func = nn.CrossEntropyLoss(dataset.class_weights)
optimizer = optim.Adam(classifier.parameters(), lr=args.learning_rate)
scheduler = optim.lr_scheduler.ReduceLROnPlateau(optimizer=optimizer,
                                                 mode='min', factor=0.5,
                                                 patience=1)

train_state = make_train_state(args)

epoch_bar = tqdm_notebook(desc='training routine', 
                          total=args.num_epochs,
                          position=0)

dataset.set_split('train')
train_bar = tqdm_notebook(desc='split=train',
                          total=dataset.get_num_batches(args.batch_size), 
                          position=1, 
                          leave=True)
dataset.set_split('val')
val_bar = tqdm_notebook(desc='split=val',
                        total=dataset.get_num_batches(args.batch_size), 
                        position=1, 
                        leave=True)

try:
    for epoch_index in range(args.num_epochs):
        train_state['epoch_index'] = epoch_index

        # Iterate over training dataset

        # setup: batch generator, set loss and acc to 0, set train mode on

        dataset.set_split('train')
        batch_generator = generate_batches(dataset, 
                                           batch_size=args.batch_size, 
                                           device=args.device)
        running_loss = 0.0
        running_acc = 0.0
        classifier.train()

        for batch_index, batch_dict in enumerate(batch_generator):
            # the training routine is these 5 steps:

            # --------------------------------------
            # step 1. zero the gradients
            optimizer.zero_grad()

            # step 2. compute the output
            y_pred = classifier(batch_dict['x_surname'])

            # step 3. compute the loss
            loss = loss_func(y_pred, batch_dict['y_nationality'])
            loss_t = loss.item()
            running_loss += (loss_t - running_loss) / (batch_index + 1)

            # step 4. use loss to produce gradients
            loss.backward()

            # step 5. use optimizer to take gradient step
            optimizer.step()
            # -----------------------------------------
            # compute the accuracy
            acc_t = compute_accuracy(y_pred, batch_dict['y_nationality'])
            running_acc += (acc_t - running_acc) / (batch_index + 1)

            # update bar
            train_bar.set_postfix(loss=running_loss, acc=running_acc, 
                            epoch=epoch_index)
            train_bar.update()

        train_state['train_loss'].append(running_loss)
        train_state['train_acc'].append(running_acc)

        # Iterate over val dataset

        # setup: batch generator, set loss and acc to 0; set eval mode on
        dataset.set_split('val')
        batch_generator = generate_batches(dataset, 
                                           batch_size=args.batch_size, 
                                           device=args.device)
        running_loss = 0.
        running_acc = 0.
        classifier.eval()

        for batch_index, batch_dict in enumerate(batch_generator):

            # compute the output
            y_pred =  classifier(batch_dict['x_surname'])

            # step 3. compute the loss
            loss = loss_func(y_pred, batch_dict['y_nationality'])
            loss_t = loss.to("cpu").item()
            running_loss += (loss_t - running_loss) / (batch_index + 1)

            # compute the accuracy
            acc_t = compute_accuracy(y_pred, batch_dict['y_nationality'])
            running_acc += (acc_t - running_acc) / (batch_index + 1)
            val_bar.set_postfix(loss=running_loss, acc=running_acc, 
                            epoch=epoch_index)
            val_bar.update()

        train_state['val_loss'].append(running_loss)
        train_state['val_acc'].append(running_acc)

        train_state = update_train_state(args=args, model=classifier,
                                         train_state=train_state)

        scheduler.step(train_state['val_loss'][-1])

        if train_state['stop_early']:
            break

        train_bar.n = 0
        val_bar.n = 0
        epoch_bar.update()
except KeyboardInterrupt:
    print("Exiting loop")
/opt/conda/lib/python3.6/site-packages/ipykernel_launcher.py:27: TqdmDeprecationWarning: This function will be removed in tqdm==5.0.0
Please use `tqdm.notebook.tqdm` instead of `tqdm.tqdm_notebook`



HBox(children=(FloatProgress(value=0.0, description='training routine', style=ProgressStyle(description_width=…


/opt/conda/lib/python3.6/site-packages/ipykernel_launcher.py:33: TqdmDeprecationWarning: This function will be removed in tqdm==5.0.0
Please use `tqdm.notebook.tqdm` instead of `tqdm.tqdm_notebook`



HBox(children=(FloatProgress(value=0.0, description='split=train', max=120.0, style=ProgressStyle(description_…


/opt/conda/lib/python3.6/site-packages/ipykernel_launcher.py:38: TqdmDeprecationWarning: This function will be removed in tqdm==5.0.0
Please use `tqdm.notebook.tqdm` instead of `tqdm.tqdm_notebook`



HBox(children=(FloatProgress(value=0.0, description='split=val', max=25.0, style=ProgressStyle(description_wid…
# compute the loss & accuracy on the test set using the best available model

classifier.load_state_dict(torch.load(train_state['model_filename']))

classifier = classifier.to(args.device)
dataset.class_weights = dataset.class_weights.to(args.device)
loss_func = nn.CrossEntropyLoss(dataset.class_weights)

dataset.set_split('test')
batch_generator = generate_batches(dataset, 
                                   batch_size=args.batch_size, 
                                   device=args.device)
running_loss = 0.
running_acc = 0.
classifier.eval()

for batch_index, batch_dict in enumerate(batch_generator):
    # compute the output
    y_pred =  classifier(batch_dict['x_surname'])
    
    # compute the loss
    loss = loss_func(y_pred, batch_dict['y_nationality'])
    loss_t = loss.item()
    running_loss += (loss_t - running_loss) / (batch_index + 1)

    # compute the accuracy
    acc_t = compute_accuracy(y_pred, batch_dict['y_nationality'])
    running_acc += (acc_t - running_acc) / (batch_index + 1)

train_state['test_loss'] = running_loss
train_state['test_acc'] = running_acc
print("Test loss: {};".format(train_state['test_loss']))
print("Test Accuracy: {}".format(train_state['test_acc']))
Test loss: 1.819154896736145;
Test Accuracy: 46.68749999999999

In the next part, I will use this trained model to do the inference work.

def predict_nationality(surname, classifier, vectorizer):
    """Predict the nationality from a new surname
    
    Args:
        surname (str): the surname to classifier
        classifier (SurnameClassifer): an instance of the classifier
        vectorizer (SurnameVectorizer): the corresponding vectorizer
    Returns:
        a dictionary with the most likely nationality and its probability
    """
    vectorized_surname = vectorizer.vectorize(surname)
    vectorized_surname = torch.tensor(vectorized_surname).view(1, -1)
    result = classifier(vectorized_surname, apply_softmax=True)

    probability_values, indices = result.max(dim=1)
    index = indices.item()

    predicted_nationality = vectorizer.nationality_vocab.lookup_index(index)
    probability_value = probability_values.item()

    return {'nationality': predicted_nationality, 'probability': probability_value}
new_surname = input("Enter a surname to classify: ")
classifier = classifier.to("cpu")
prediction = predict_nationality(new_surname, classifier, vectorizer)
print("{} -> {} (p={:0.2f})".format(new_surname,
                                    prediction['nationality'],
                                    prediction['probability']))
Enter a surname to classify:  McMahan


McMahan -> Irish (p=0.41)

As we input McMahan as a surname, the output of the model is Irish (p=0.41),which indicates the probability that MaMahan is an Irish surname is 0.41.

vectorizer.nationality_vocab.lookup_index(8)
'Irish'
def predict_topk_nationality(name, classifier, vectorizer, k=5):
    vectorized_name = vectorizer.vectorize(name)
    vectorized_name = torch.tensor(vectorized_name).view(1, -1)
    prediction_vector = classifier(vectorized_name, apply_softmax=True)
    probability_values, indices = torch.topk(prediction_vector, k=k)
    
    # returned size is 1,k
    probability_values = probability_values.detach().numpy()[0]
    indices = indices.detach().numpy()[0]
    
    results = []
    for prob_value, index in zip(probability_values, indices):
        nationality = vectorizer.nationality_vocab.lookup_index(index)
        results.append({'nationality': nationality, 
                        'probability': prob_value})
    
    return results


new_surname = input("Enter a surname to classify: ")
classifier = classifier.to("cpu")

k = int(input("How many of the top predictions to see? "))
if k > len(vectorizer.nationality_vocab):
    print("Sorry! That's more than the # of nationalities we have.. defaulting you to max size :)")
    k = len(vectorizer.nationality_vocab)
    
predictions = predict_topk_nationality(new_surname, classifier, vectorizer, k=k)

print("Top {} predictions:".format(k))
print("===================")
for prediction in predictions:
    print("{} -> {} (p={:0.2f})".format(new_surname,
                                        prediction['nationality'],
                                        prediction['probability']))
Enter a surname to classify:  McMahan
How many of the top predictions to see?  5


Top 5 predictions:
===================
McMahan -> Irish (p=0.41)
McMahan -> Scottish (p=0.25)
McMahan -> Czech (p=0.08)
McMahan -> Vietnamese (p=0.06)
McMahan -> German (p=0.05)

This is the model’s Top-K inference. The output consists of five nationalities with its probablity.

3.5 Regularizing MLPs: Weight Regularization and Structural Regularization (or Dropout)

Now, we have implemented a MLP model using The Surname Dataset, the model seem can predict an individual’s nationality based on their surname at some point. Wheares the accuracy is not so good.

In this part, we’ll regularizing the MLPs, including weight regularization and structural regularization. And we can also introduce Dropout to the MLPs.

First, what is Dropout in MLPs?

To put it simply, Dropout is a regularization technique used in the training of neural networks, including Multi-Layer Perceptrons (MLPs), to prevent overfitting. It works by randomly “dropping out” a subset of neurons during each training iteration.

  1. Random Neuron Deactivation:

    • During each training iteration, a fraction of neurons in each layer (except the output layer) are randomly selected and temporarily removed from the network. The probability of dropping a neuron is a hyperparameter typically denoted as ( p ) (dropout rate). For instance, if ( p = 0.5 ), then each neuron has a 50% chance of being dropped during a given iteration.
  2. Training Phase:

    • While training the network, dropout is applied independently to each layer. This means that each forward and backward pass uses a different subset of the network, effectively training different “thinned” versions of the network.
    • Neurons that are dropped do not contribute to the forward pass (i.e., they do not participate in the computation of the output) and do not participate in the backward pass (i.e., they do not contribute to the gradient calculation).
  3. Testing Phase:

    • During testing, dropout is not applied. Instead, all neurons are active, but their outputs are scaled down by a factor of ( 1 - p ) to account for the increased number of active neurons compared to the training phase. This scaling ensures that the expected output at test time matches the expected output during training.

There are many Benefits of Dropout.

  1. Reduces Overfitting:

    • By randomly deactivating neurons during training, dropout prevents the network from becoming too reliant on any particular neurons, encouraging it to learn more robust features and representations. This randomness forces the network to be more generalized rather than memorizing the training data.
  2. Improves Generalization:

    • The network becomes less sensitive to the specific weights of individual neurons since different subsets of neurons are used during each training iteration. This helps the model generalize better to unseen data.

Here’s a brief overview of how dropout is typically implemented in an MLPs, which is our modelz:

  1. During Training:

    • For each layer, a binary mask (vector of 0s and 1s) is generated, where each element of the mask is 0 with probability ( p ) and 1 with probability ( 1 - p ).
    • The activations of the layer are element-wise multiplied by this mask, effectively dropping out the corresponding neurons.
  2. During Testing:

    • All neurons are active, but the outputs of the neurons are scaled down by multiplying by ( 1 - p ). This scaling ensures that the sum of the neuron activations remains approximately the same as during training.

When we implement Dropout, we should consider this terms below:

  • Hyperparameter Tuning: The dropout rate ( p ) is a hyperparameter that typically requires tuning. Common values range from 0.2 to 0.5.
  • Performance: Dropout can increase the training time due to the randomization process and the need to perform multiple forward and backward passes with different network configurations.
  • Network Architecture: Dropout is generally more beneficial for deeper networks with many parameters, where the risk of overfitting is higher.

In conclusion,Dropout is a powerful and widely used technique to improve the robustness and generalization ability of neural networks, particularly in deep learning models. By randomly deactivating neurons during training, dropout reduces overfitting and encourages the network to learn more generalized patterns, leading to better performance on unseen data.

import torch.nn as nn
import torch.nn.functional as F

class MultilayerPerceptron(nn.Module):
    def __init__(self, input_dim, hidden_dim, output_dim):
        """
        Args:
            input_dim (int): the size of the input vectors
            hidden_dim (int): the output size of the first Linear layer
            output_dim (int): the output size of the second Linear layer
        """
        super(MultilayerPerceptron, self).__init__()
        self.fc1 = nn.Linear(input_dim, hidden_dim)
        self.fc2 = nn.Linear(hidden_dim, output_dim)

    def forward(self, x_in, apply_softmax=False):
        """The forward pass of the MLP

        Args:
            x_in (torch.Tensor): an input data tensor.
                x_in.shape should be (batch, input_dim)
            apply_softmax (bool): a flag for the softmax activation
                should be false if used with the Cross Entropy losses
        Returns:
            the resulting tensor. tensor.shape should be (batch, output_dim)
        """
        intermediate = F.relu(self.fc1(x_in))
        output = self.fc2(F.dropout(intermediate, p=0.5))

        if apply_softmax:
            output = F.softmax(output, dim=1)
        return output
class MultilayerPerceptron(nn.Module):
    def __init__(self, input_dim, hidden_dim, output_dim):
        """
        Args:
            input_dim (int): the size of the input vectors
            hidden_dim (int): the output size of the first Linear layer
            output_dim (int): the output size of the second Linear layer
        """
        super(MultilayerPerceptron, self).__init__()
        self.fc1 = nn.Linear(input_dim, hidden_dim)
        self.fc2 = nn.Linear(hidden_dim, output_dim)

    def forward(self, x_in, apply_softmax=False):
        """The forward pass of the MLP
        
        Args:
            x_in (torch.Tensor): an input data tensor. 
                x_in.shape should be (batch, input_dim)
            apply_softmax (bool): a flag for the softmax activation
                should be false if used with the Cross Entropy losses
        Returns:
            the resulting tensor. tensor.shape should be (batch, output_dim)
        """
        intermediate = F.relu(self.fc1(x_in))
        output = self.fc2(F.dropout(intermediate, p=0.5))
        
        if apply_softmax:
            output = F.softmax(output, dim=1)
        return output

batch_size = 2 # number of samples input at once
input_dim = 3
hidden_dim = 100
output_dim = 4

# Initialize model
mlp = MultilayerPerceptron(input_dim, hidden_dim, output_dim)
print(mlp)

y_output = mlp(x_input, apply_softmax=False)
describe(y_output)
MultilayerPerceptron(
  (fc1): Linear(in_features=3, out_features=100, bias=True)
  (fc2): Linear(in_features=100, out_features=4, bias=True)
)
Type: torch.FloatTensor
Shape/size: torch.Size([2, 4])
Values: 
tensor([[-0.0696, -0.1185,  0.1770,  0.1714],
        [-0.2222,  0.5156,  0.2825, -0.1982]], grad_fn=<AddmmBackward>)

4 Surname Classification with Convolutional Neural Networks

In the first part of this experiment, we delve into MLPs, neural networks built from a sequence of linear layers and nonlinear functions. MLPS are not the best tool for exploiting sequential patterns. For example, in the last name dataset, the last name can have segments (of different lengths), These segments can reveal quite a bit of information about their country of origin (such as “O” in “O 'Neill”, “opoulos” in “Antonopoulos”, “sawa” in “Nagasawa” or “Zh” in “Zhu”). These segments can be of variable length and the challenge is to capture them without explicitly encoding them.

In this section, we introduce convolutional neural networks (CNNS), a type of neural network that is well suited for detecting spatial substructures (and therefore creating meaningful spatial substructures). CNNs achieve this by scanning the input data tensor using a small number of weights. With this scanning, they produce output tensors that represent substructure detection (or non-detection).

In the rest of this section, we first describe how CNNS work and the issues that should be considered when designing CNNS. We delve into CNN hyperparameters with the goal of providing intuitive behavior and the impact of these hyperparameters on the output. Finally, we illustrate the mechanism of CNNs step by step through several simple examples. In “Example: Classifying Last Names with CNNS”, we’ll dive into a broader example.

Here is an exmaple of 2D convolution.

在这里插入图片描述

Informally, channels are the feature dimensions along each point in the input. For example, in the image, each pixel in the image corresponding to the RGB component has three channels. A similar concept can be adopted for text data when using convolutions. Conceptually, if the “pixels” in a text document are words, the number of channels is the size of the vocabulary. If we think about convolutions of characters more fine-grained, the number of channels is the size of the character set (which in this case happens to be the vocabulary). In the PyTorch convolution implementation, the number of input channels is the in_channels parameter. The convolution operation can produce multiple channels in the output (out_channels). You can think of this as a convolution operator “mapping” the input feature dimension to the output feature dimension. In the pictures below illustrate this concept.

在这里插入图片描述
在这里插入图片描述

4.1 Implementation CNNs

In this section, we leverage the concepts introduced in the previous section with an end-to-end example. In general, the goal of neural network design is to find a hyperparameter configuration that can accomplish the task. We again consider the now-familiar last name classification task introduced in “Example: Last Name Classification with Multi-layer Perceptrons”, but we will use CNNs instead of MLPS. We still need to apply a final linear layer, which will learn to create prediction vectors from feature vectors created by a series of convolutional layers. This means that the goal is to determine the convolutional layer configuration that results in the desired feature vector. All CNN applications work like this: first there is a set of convolutional layers, which extract a feature map and then use it as input for upstream processing. In classification, upstream processing almost always applies linear (or fc) layers.

The implementation in this course walks through design decisions to construct a feature vector. We first construct an artificial data tensor that reflects the shape of the actual data. The size of the data tensor is three-dimensional -this is the minimum batch size for vectorizing text data. If you use a onehot vector for each character in a sequence of characters, then the sequence of onehot vectors is a matrix, and the mini-batch of onehot matrices is a 3D tensor. Using the terminology of convolutions, the size of each onehot(usually the size of the vocabulary) is the number of “input channels” and the length of the character sequence is the “width”.

In Example 4-14, the first step in constructing the feature vectors is to apply an instance of PyTorch’s Conv1d class to the 3D data tensor. By checking the size of the output, you can tell how much the tensor is reduced. It is recommended to refer to Figure 4-9 to visually explain why the output tensor is shrinking.

batch_size = 2
one_hot_size = 10
sequence_width = 7
data = torch.randn(batch_size, one_hot_size, sequence_width)
conv1 = nn.Conv1d(in_channels=one_hot_size, out_channels=16, kernel_size=3)
intermediate1 = conv1(data)
print(data.size())
print(intermediate1.size())
torch.Size([2, 10, 7])
torch.Size([2, 16, 5])
conv2 = nn.Conv1d(in_channels=16, out_channels=32, kernel_size=3)
conv3 = nn.Conv1d(in_channels=32, out_channels=64, kernel_size=3)

intermediate2 = conv2(intermediate1)
intermediate3 = conv3(intermediate2)

print(intermediate2.size())
print(intermediate3.size())
torch.Size([2, 32, 3])
torch.Size([2, 64, 1])
y_output = intermediate3.squeeze()
print(y_output.size())
torch.Size([2, 64])
intermediate2.mean(dim=0).mean(dim=1).sum()
tensor(0.3635, grad_fn=<SumBackward0>)
# Method 2 of reducing to feature vectors
print(intermediate1.view(batch_size, -1).size())

# Method 3 of reducing to feature vectors
print(torch.mean(intermediate1, dim=2).size())
# print(torch.max(intermediate1, dim=2).size())
# print(torch.sum(intermediate1, dim=2).size())
torch.Size([2, 80])
torch.Size([2, 16])

4.2 Load Data

class SurnameDataset(Dataset):
    # ... existing implementation from Section 4.2

    def __getitem__(self, index):
        row = self._target_df.iloc[index]

        surname_matrix = \
            self._vectorizer.vectorize(row.surname, self._max_seq_length)

        nationality_index = \
             self._vectorizer.nationality_vocab.lookup_token(row.nationality)

        return {'x_surname': surname_matrix,
                'y_nationality': nationality_index}
class SurnameVectorizer(object):
    """ The Vectorizer which coordinates the Vocabularies and puts them to use"""
    def vectorize(self, surname):
        """
        Args:
            surname (str): the surname
        Returns:
            one_hot_matrix (np.ndarray): a matrix of one-hot vectors
        """

        one_hot_matrix_size = (len(self.character_vocab), self.max_surname_length)
        one_hot_matrix = np.zeros(one_hot_matrix_size, dtype=np.float32)

        for position_index, character in enumerate(surname):
            character_index = self.character_vocab.lookup_token(character)
            one_hot_matrix[character_index][position_index] = 1

        return one_hot_matrix

    @classmethod
    def from_dataframe(cls, surname_df):
        """Instantiate the vectorizer from the dataset dataframe

        Args:
            surname_df (pandas.DataFrame): the surnames dataset
        Returns:
            an instance of the SurnameVectorizer
        """
        character_vocab = Vocabulary(unk_token="@")
        nationality_vocab = Vocabulary(add_unk=False)
        max_surname_length = 0

        for index, row in surname_df.iterrows():
            max_surname_length = max(max_surname_length, len(row.surname))
            for letter in row.surname:
                character_vocab.add_token(letter)
            nationality_vocab.add_token(row.nationality)

        return cls(character_vocab, nationality_vocab, max_surname_length)

4.3 Model Define

import torch.nn as nn
import torch.nn.functional as F

class SurnameClassifier(nn.Module):
    def __init__(self, initial_num_channels, num_classes, num_channels):
        """
        Args:
            initial_num_channels (int): size of the incoming feature vector
            num_classes (int): size of the output prediction vector
            num_channels (int): constant channel size to use throughout network
        """
        super(SurnameClassifier, self).__init__()

        self.convnet = nn.Sequential(
            nn.Conv1d(in_channels=initial_num_channels,
                      out_channels=num_channels, kernel_size=3),
            nn.ELU(),
            nn.Conv1d(in_channels=num_channels, out_channels=num_channels,
                      kernel_size=3, stride=2),
            nn.ELU(),
            nn.Conv1d(in_channels=num_channels, out_channels=num_channels,
                      kernel_size=3, stride=2),
            nn.ELU(),
            nn.Conv1d(in_channels=num_channels, out_channels=num_channels,
                      kernel_size=3),
            nn.ELU()
        )
        self.fc = nn.Linear(num_channels, num_classes)

    def forward(self, x_surname, apply_softmax=False):
        """The forward pass of the classifier

        Args:
            x_surname (torch.Tensor): an input data tensor.
                x_surname.shape should be (batch, initial_num_channels,
                                           max_surname_length)
            apply_softmax (bool): a flag for the softmax activation
                should be false if used with the Cross Entropy losses
        Returns:
            the resulting tensor. tensor.shape should be (batch, num_classes)
        """
        features = self.convnet(x_surname).squeeze(dim=2)
        prediction_vector = self.fc(features)

        if apply_softmax:
            prediction_vector = F.softmax(prediction_vector, dim=1)

        return prediction_vector
args = Namespace(
    # Data and Path information
    surname_csv="data/surnames/surnames_with_splits.csv",
    vectorizer_file="vectorizer.json",
    model_state_file="model.pth",
    save_dir="model_storage/ch4/cnn",
    # Model hyper parameters
    hidden_dim=100,
    num_channels=256,
    # Training hyper parameters
    seed=1337,
    learning_rate=0.001,
    batch_size=128,
    num_epochs=100,
    early_stopping_criteria=5,
    dropout_p=0.1,
    # Runtime omitted for space ...
)
def predict_nationality(surname, classifier, vectorizer):
    """Predict the nationality from a new surname

    Args:
        surname (str): the surname to classifier
        classifier (SurnameClassifer): an instance of the classifier
        vectorizer (SurnameVectorizer): the corresponding vectorizer
    Returns:
        a dictionary with the most likely nationality and its probability
    """
    vectorized_surname = vectorizer.vectorize(surname)
    vectorized_surname = torch.tensor(vectorized_surname).unsqueeze(0)
    result = classifier(vectorized_surname, apply_softmax=True)

    probability_values, indices = result.max(dim=1)
    index = indices.item()

    predicted_nationality = vectorizer.nationality_vocab.lookup_index(index)
    probability_value = probability_values.item()

    return {'nationality': predicted_nationality, 'probability': probability_value}
conv1 = nn.Conv1d(in_channels=one_hot_size, out_channels=16, kernel_size=3)
conv2 = nn.Conv1d(in_channels=16, out_channels=32, kernel_size=3)
conv3 = nn.Conv1d(in_channels=32, out_channels=64, kernel_size=3)

conv1_bn = nn.BatchNorm1d(num_features=16)
conv2_bn = nn.BatchNorm1d(num_features=32)
    
intermediate1 = conv1_bn(F.relu(conv1(data)))
intermediate2 = conv2_bn(F.relu(conv2(intermediate1)))
intermediate3 = conv3(intermediate2)

print(intermediate1.size())
print(intermediate2.size())
print(intermediate3.size())
torch.Size([2, 16, 5])
torch.Size([2, 32, 3])
torch.Size([2, 64, 1])

4.4 Classifying Surnames with a Convolutional Neural Network

from argparse import Namespace
from collections import Counter
import json
import os
import string

import numpy as np
import pandas as pd
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torch.utils.data import Dataset, DataLoader
from tqdm import tqdm_notebook
class Vocabulary(object):
    """Class to process text and extract vocabulary for mapping"""

    def __init__(self, token_to_idx=None, add_unk=True, unk_token="<UNK>"):
        """
        Args:
            token_to_idx (dict): a pre-existing map of tokens to indices
            add_unk (bool): a flag that indicates whether to add the UNK token
            unk_token (str): the UNK token to add into the Vocabulary
        """

        if token_to_idx is None:
            token_to_idx = {}
        self._token_to_idx = token_to_idx

        self._idx_to_token = {idx: token 
                              for token, idx in self._token_to_idx.items()}
        
        self._add_unk = add_unk
        self._unk_token = unk_token
        
        self.unk_index = -1
        if add_unk:
            self.unk_index = self.add_token(unk_token) 
        
        
    def to_serializable(self):
        """ returns a dictionary that can be serialized """
        return {'token_to_idx': self._token_to_idx, 
                'add_unk': self._add_unk, 
                'unk_token': self._unk_token}

    @classmethod
    def from_serializable(cls, contents):
        """ instantiates the Vocabulary from a serialized dictionary """
        return cls(**contents)

    def add_token(self, token):
        """Update mapping dicts based on the token.

        Args:
            token (str): the item to add into the Vocabulary
        Returns:
            index (int): the integer corresponding to the token
        """
        try:
            index = self._token_to_idx[token]
        except KeyError:
            index = len(self._token_to_idx)
            self._token_to_idx[token] = index
            self._idx_to_token[index] = token
        return index
    
    def add_many(self, tokens):
        """Add a list of tokens into the Vocabulary
        
        Args:
            tokens (list): a list of string tokens
        Returns:
            indices (list): a list of indices corresponding to the tokens
        """
        return [self.add_token(token) for token in tokens]

    def lookup_token(self, token):
        """Retrieve the index associated with the token 
          or the UNK index if token isn't present.
        
        Args:
            token (str): the token to look up 
        Returns:
            index (int): the index corresponding to the token
        Notes:
            `unk_index` needs to be >=0 (having been added into the Vocabulary) 
              for the UNK functionality 
        """
        if self.unk_index >= 0:
            return self._token_to_idx.get(token, self.unk_index)
        else:
            return self._token_to_idx[token]

    def lookup_index(self, index):
        """Return the token associated with the index
        
        Args: 
            index (int): the index to look up
        Returns:
            token (str): the token corresponding to the index
        Raises:
            KeyError: if the index is not in the Vocabulary
        """
        if index not in self._idx_to_token:
            raise KeyError("the index (%d) is not in the Vocabulary" % index)
        return self._idx_to_token[index]

    def __str__(self):
        return "<Vocabulary(size=%d)>" % len(self)

    def __len__(self):
        return len(self._token_to_idx)
class SurnameVectorizer(object):
    """ The Vectorizer which coordinates the Vocabularies and puts them to use"""
    def __init__(self, surname_vocab, nationality_vocab, max_surname_length):
        """
        Args:
            surname_vocab (Vocabulary): maps characters to integers
            nationality_vocab (Vocabulary): maps nationalities to integers
            max_surname_length (int): the length of the longest surname
        """
        self.surname_vocab = surname_vocab
        self.nationality_vocab = nationality_vocab
        self._max_surname_length = max_surname_length

    def vectorize(self, surname):
        """
        Args:
            surname (str): the surname
        Returns:
            one_hot_matrix (np.ndarray): a matrix of one-hot vectors
        """

        one_hot_matrix_size = (len(self.surname_vocab), self._max_surname_length)
        one_hot_matrix = np.zeros(one_hot_matrix_size, dtype=np.float32)
                               
        for position_index, character in enumerate(surname):
            character_index = self.surname_vocab.lookup_token(character)
            one_hot_matrix[character_index][position_index] = 1
        
        return one_hot_matrix

    @classmethod
    def from_dataframe(cls, surname_df):
        """Instantiate the vectorizer from the dataset dataframe
        
        Args:
            surname_df (pandas.DataFrame): the surnames dataset
        Returns:
            an instance of the SurnameVectorizer
        """
        surname_vocab = Vocabulary(unk_token="@")
        nationality_vocab = Vocabulary(add_unk=False)
        max_surname_length = 0

        for index, row in surname_df.iterrows():
            max_surname_length = max(max_surname_length, len(row.surname))
            for letter in row.surname:
                surname_vocab.add_token(letter)
            nationality_vocab.add_token(row.nationality)

        return cls(surname_vocab, nationality_vocab, max_surname_length)

    @classmethod
    def from_serializable(cls, contents):
        surname_vocab = Vocabulary.from_serializable(contents['surname_vocab'])
        nationality_vocab =  Vocabulary.from_serializable(contents['nationality_vocab'])
        return cls(surname_vocab=surname_vocab, nationality_vocab=nationality_vocab, 
                   max_surname_length=contents['max_surname_length'])

    def to_serializable(self):
        return {'surname_vocab': self.surname_vocab.to_serializable(),
                'nationality_vocab': self.nationality_vocab.to_serializable(), 
                'max_surname_length': self._max_surname_length}
class SurnameDataset(Dataset):
    def __init__(self, surname_df, vectorizer):
        """
        Args:
            name_df (pandas.DataFrame): the dataset
            vectorizer (SurnameVectorizer): vectorizer instatiated from dataset
        """
        self.surname_df = surname_df
        self._vectorizer = vectorizer
        self.train_df = self.surname_df[self.surname_df.split=='train']
        self.train_size = len(self.train_df)

        self.val_df = self.surname_df[self.surname_df.split=='val']
        self.validation_size = len(self.val_df)

        self.test_df = self.surname_df[self.surname_df.split=='test']
        self.test_size = len(self.test_df)

        self._lookup_dict = {'train': (self.train_df, self.train_size),
                             'val': (self.val_df, self.validation_size),
                             'test': (self.test_df, self.test_size)}

        self.set_split('train')
        
        # Class weights
        class_counts = surname_df.nationality.value_counts().to_dict()
        def sort_key(item):
            return self._vectorizer.nationality_vocab.lookup_token(item[0])
        sorted_counts = sorted(class_counts.items(), key=sort_key)
        frequencies = [count for _, count in sorted_counts]
        self.class_weights = 1.0 / torch.tensor(frequencies, dtype=torch.float32)


    @classmethod
    def load_dataset_and_make_vectorizer(cls, surname_csv):
        """Load dataset and make a new vectorizer from scratch
        
        Args:
            surname_csv (str): location of the dataset
        Returns:
            an instance of SurnameDataset
        """
        surname_df = pd.read_csv(surname_csv)
        train_surname_df = surname_df[surname_df.split=='train']
        return cls(surname_df, SurnameVectorizer.from_dataframe(train_surname_df))

    @classmethod
    def load_dataset_and_load_vectorizer(cls, surname_csv, vectorizer_filepath):
        """Load dataset and the corresponding vectorizer. 
        Used in the case in the vectorizer has been cached for re-use
        
        Args:
            surname_csv (str): location of the dataset
            vectorizer_filepath (str): location of the saved vectorizer
        Returns:
            an instance of SurnameDataset
        """
        surname_df = pd.read_csv(surname_csv)
        vectorizer = cls.load_vectorizer_only(vectorizer_filepath)
        return cls(surname_df, vectorizer)

    @staticmethod
    def load_vectorizer_only(vectorizer_filepath):
        """a static method for loading the vectorizer from file
        
        Args:
            vectorizer_filepath (str): the location of the serialized vectorizer
        Returns:
            an instance of SurnameDataset
        """
        with open(vectorizer_filepath) as fp:
            return SurnameVectorizer.from_serializable(json.load(fp))

    def save_vectorizer(self, vectorizer_filepath):
        """saves the vectorizer to disk using json
        
        Args:
            vectorizer_filepath (str): the location to save the vectorizer
        """
        with open(vectorizer_filepath, "w") as fp:
            json.dump(self._vectorizer.to_serializable(), fp)

    def get_vectorizer(self):
        """ returns the vectorizer """
        return self._vectorizer

    def set_split(self, split="train"):
        """ selects the splits in the dataset using a column in the dataframe """
        self._target_split = split
        self._target_df, self._target_size = self._lookup_dict[split]

    def __len__(self):
        return self._target_size

    def __getitem__(self, index):
        """the primary entry point method for PyTorch datasets
        
        Args:
            index (int): the index to the data point 
        Returns:
            a dictionary holding the data point's features (x_data) and label (y_target)
        """
        row = self._target_df.iloc[index]

        surname_matrix = \
            self._vectorizer.vectorize(row.surname)

        nationality_index = \
            self._vectorizer.nationality_vocab.lookup_token(row.nationality)

        return {'x_surname': surname_matrix,
                'y_nationality': nationality_index}

    def get_num_batches(self, batch_size):
        """Given a batch size, return the number of batches in the dataset
        
        Args:
            batch_size (int)
        Returns:
            number of batches in the dataset
        """
        return len(self) // batch_size

    
def generate_batches(dataset, batch_size, shuffle=True,
                     drop_last=True, device="cpu"):
    """
    A generator function which wraps the PyTorch DataLoader. It will 
      ensure each tensor is on the write device location.
    """
    dataloader = DataLoader(dataset=dataset, batch_size=batch_size,
                            shuffle=shuffle, drop_last=drop_last)

    for data_dict in dataloader:
        out_data_dict = {}
        for name, tensor in data_dict.items():
            out_data_dict[name] = data_dict[name].to(device)
        yield out_data_dict
class SurnameClassifier(nn.Module):
    def __init__(self, initial_num_channels, num_classes, num_channels):
        """
        Args:
            initial_num_channels (int): size of the incoming feature vector
            num_classes (int): size of the output prediction vector
            num_channels (int): constant channel size to use throughout network
        """
        super(SurnameClassifier, self).__init__()
        
        self.convnet = nn.Sequential(
            nn.Conv1d(in_channels=initial_num_channels, 
                      out_channels=num_channels, kernel_size=3),
            nn.ELU(),
            nn.Conv1d(in_channels=num_channels, out_channels=num_channels, 
                      kernel_size=3, stride=2),
            nn.ELU(),
            nn.Conv1d(in_channels=num_channels, out_channels=num_channels, 
                      kernel_size=3, stride=2),
            nn.ELU(),
            nn.Conv1d(in_channels=num_channels, out_channels=num_channels, 
                      kernel_size=3),
            nn.ELU()
        )
        self.fc = nn.Linear(num_channels, num_classes)

    def forward(self, x_surname, apply_softmax=False):
        """The forward pass of the classifier
        
        Args:
            x_surname (torch.Tensor): an input data tensor. 
                x_surname.shape should be (batch, initial_num_channels, max_surname_length)
            apply_softmax (bool): a flag for the softmax activation
                should be false if used with the Cross Entropy losses
        Returns:
            the resulting tensor. tensor.shape should be (batch, num_classes)
        """
        features = self.convnet(x_surname).squeeze(dim=2)
       
        prediction_vector = self.fc(features)

        if apply_softmax:
            prediction_vector = F.softmax(prediction_vector, dim=1)

        return prediction_vector

def make_train_state(args):
    return {'stop_early': False,
            'early_stopping_step': 0,
            'early_stopping_best_val': 1e8,
            'learning_rate': args.learning_rate,
            'epoch_index': 0,
            'train_loss': [],
            'train_acc': [],
            'val_loss': [],
            'val_acc': [],
            'test_loss': -1,
            'test_acc': -1,
            'model_filename': args.model_state_file}
def update_train_state(args, model, train_state):
    """Handle the training state updates.

    Components:
     - Early Stopping: Prevent overfitting.
     - Model Checkpoint: Model is saved if the model is better

    :param args: main arguments
    :param model: model to train
    :param train_state: a dictionary representing the training state values
    :returns:
        a new train_state
    """

    # Save one model at least
    if train_state['epoch_index'] == 0:
        torch.save(model.state_dict(), train_state['model_filename'])
        train_state['stop_early'] = False

    # Save model if performance improved
    elif train_state['epoch_index'] >= 1:
        loss_tm1, loss_t = train_state['val_loss'][-2:]

        # If loss worsened
        if loss_t >= train_state['early_stopping_best_val']:
            # Update step
            train_state['early_stopping_step'] += 1
        # Loss decreased
        else:
            # Save the best model
            if loss_t < train_state['early_stopping_best_val']:
                torch.save(model.state_dict(), train_state['model_filename'])

            # Reset early stopping step
            train_state['early_stopping_step'] = 0

        # Stop early ?
        train_state['stop_early'] = \
            train_state['early_stopping_step'] >= args.early_stopping_criteria

    return train_state
def compute_accuracy(y_pred, y_target):
    y_pred_indices = y_pred.max(dim=1)[1]
    n_correct = torch.eq(y_pred_indices, y_target).sum().item()
    return n_correct / len(y_pred_indices) * 100
args = Namespace(
    # Data and Path information
    surname_csv="surnames_with_splits.csv",
    vectorizer_file="vectorizer.json",
    model_state_file="model.pth",
    save_dir="model_storage/ch4/cnn",
    # Model hyper parameters
    hidden_dim=100,
    num_channels=256,
    # Training hyper parameters
    seed=1337,
    learning_rate=0.001,
    batch_size=128,
    num_epochs=100,
    early_stopping_criteria=5,
    dropout_p=0.1,
    # Runtime options
    cuda=False,
    reload_from_files=False,
    expand_filepaths_to_save_dir=True,
    catch_keyboard_interrupt=True
)


if args.expand_filepaths_to_save_dir:
    args.vectorizer_file = os.path.join(args.save_dir,
                                        args.vectorizer_file)

    args.model_state_file = os.path.join(args.save_dir,
                                         args.model_state_file)
    
    print("Expanded filepaths: ")
    print("\t{}".format(args.vectorizer_file))
    print("\t{}".format(args.model_state_file))
    
# Check CUDA
if not torch.cuda.is_available():
    args.cuda = False

args.device = torch.device("cuda" if args.cuda else "cpu")
print("Using CUDA: {}".format(args.cuda))

def set_seed_everywhere(seed, cuda):
    np.random.seed(seed)
    torch.manual_seed(seed)
    if cuda:
        torch.cuda.manual_seed_all(seed)
        
def handle_dirs(dirpath):
    if not os.path.exists(dirpath):
        os.makedirs(dirpath)
        
# Set seed for reproducibility
set_seed_everywhere(args.seed, args.cuda)

# handle dirs
handle_dirs(args.save_dir)
Expanded filepaths: 
	model_storage/ch4/cnn/vectorizer.json
	model_storage/ch4/cnn/model.pth
Using CUDA: False
if args.reload_from_files:
    # training from a checkpoint
    dataset = SurnameDataset.load_dataset_and_load_vectorizer(args.surname_csv,
                                                              args.vectorizer_file)
else:
    # create dataset and vectorizer
    dataset = SurnameDataset.load_dataset_and_make_vectorizer(args.surname_csv)
    dataset.save_vectorizer(args.vectorizer_file)
    
vectorizer = dataset.get_vectorizer()

classifier = SurnameClassifier(initial_num_channels=len(vectorizer.surname_vocab), 
                               num_classes=len(vectorizer.nationality_vocab),
                               num_channels=args.num_channels)

classifer = classifier.to(args.device)
dataset.class_weights = dataset.class_weights.to(args.device)

loss_func = nn.CrossEntropyLoss(weight=dataset.class_weights)
optimizer = optim.Adam(classifier.parameters(), lr=args.learning_rate)
scheduler = optim.lr_scheduler.ReduceLROnPlateau(optimizer=optimizer,
                                           mode='min', factor=0.5,
                                           patience=1)

train_state = make_train_state(args)
epoch_bar = tqdm_notebook(desc='training routine', 
                          total=args.num_epochs,
                          position=0)

dataset.set_split('train')
train_bar = tqdm_notebook(desc='split=train',
                          total=dataset.get_num_batches(args.batch_size), 
                          position=1, 
                          leave=True)
dataset.set_split('val')
val_bar = tqdm_notebook(desc='split=val',
                        total=dataset.get_num_batches(args.batch_size), 
                        position=1, 
                        leave=True)

try:
    for epoch_index in range(args.num_epochs):
        train_state['epoch_index'] = epoch_index

        # Iterate over training dataset

        # setup: batch generator, set loss and acc to 0, set train mode on

        dataset.set_split('train')
        batch_generator = generate_batches(dataset, 
                                           batch_size=args.batch_size, 
                                           device=args.device)
        running_loss = 0.0
        running_acc = 0.0
        classifier.train()

        for batch_index, batch_dict in enumerate(batch_generator):
            # the training routine is these 5 steps:

            # --------------------------------------
            # step 1. zero the gradients
            optimizer.zero_grad()

            # step 2. compute the output
            y_pred = classifier(batch_dict['x_surname'])

            # step 3. compute the loss
            loss = loss_func(y_pred, batch_dict['y_nationality'])
            loss_t = loss.item()
            running_loss += (loss_t - running_loss) / (batch_index + 1)

            # step 4. use loss to produce gradients
            loss.backward()

            # step 5. use optimizer to take gradient step
            optimizer.step()
            # -----------------------------------------
            # compute the accuracy
            acc_t = compute_accuracy(y_pred, batch_dict['y_nationality'])
            running_acc += (acc_t - running_acc) / (batch_index + 1)

            # update bar
            train_bar.set_postfix(loss=running_loss, acc=running_acc, 
                            epoch=epoch_index)
            train_bar.update()

        train_state['train_loss'].append(running_loss)
        train_state['train_acc'].append(running_acc)

        # Iterate over val dataset

        # setup: batch generator, set loss and acc to 0; set eval mode on
        dataset.set_split('val')
        batch_generator = generate_batches(dataset, 
                                           batch_size=args.batch_size, 
                                           device=args.device)
        running_loss = 0.
        running_acc = 0.
        classifier.eval()

        for batch_index, batch_dict in enumerate(batch_generator):

            # compute the output
            y_pred =  classifier(batch_dict['x_surname'])

            # step 3. compute the loss
            loss = loss_func(y_pred, batch_dict['y_nationality'])
            loss_t = loss.item()
            running_loss += (loss_t - running_loss) / (batch_index + 1)

            # compute the accuracy
            acc_t = compute_accuracy(y_pred, batch_dict['y_nationality'])
            running_acc += (acc_t - running_acc) / (batch_index + 1)
            val_bar.set_postfix(loss=running_loss, acc=running_acc, 
                            epoch=epoch_index)
            val_bar.update()

        train_state['val_loss'].append(running_loss)
        train_state['val_acc'].append(running_acc)

        train_state = update_train_state(args=args, model=classifier,
                                         train_state=train_state)

        scheduler.step(train_state['val_loss'][-1])

        if train_state['stop_early']:
            break

        train_bar.n = 0
        val_bar.n = 0
        epoch_bar.update()
except KeyboardInterrupt:
    print("Exiting loop")
/opt/conda/lib/python3.6/site-packages/ipykernel_launcher.py:3: TqdmDeprecationWarning: This function will be removed in tqdm==5.0.0
Please use `tqdm.notebook.tqdm` instead of `tqdm.tqdm_notebook`
  This is separate from the ipykernel package so we can avoid doing imports until



HBox(children=(FloatProgress(value=0.0, description='training routine', style=ProgressStyle(description_width=…


/opt/conda/lib/python3.6/site-packages/ipykernel_launcher.py:9: TqdmDeprecationWarning: This function will be removed in tqdm==5.0.0
Please use `tqdm.notebook.tqdm` instead of `tqdm.tqdm_notebook`
  if __name__ == '__main__':



HBox(children=(FloatProgress(value=0.0, description='split=train', max=60.0, style=ProgressStyle(description_w…


/opt/conda/lib/python3.6/site-packages/ipykernel_launcher.py:14: TqdmDeprecationWarning: This function will be removed in tqdm==5.0.0
Please use `tqdm.notebook.tqdm` instead of `tqdm.tqdm_notebook`
  



HBox(children=(FloatProgress(value=0.0, description='split=val', max=12.0, style=ProgressStyle(description_wid…
classifier.load_state_dict(torch.load(train_state['model_filename']))

classifier = classifier.to(args.device)
dataset.class_weights = dataset.class_weights.to(args.device)
loss_func = nn.CrossEntropyLoss(dataset.class_weights)

dataset.set_split('test')
batch_generator = generate_batches(dataset, 
                                   batch_size=args.batch_size, 
                                   device=args.device)
running_loss = 0.
running_acc = 0.
classifier.eval()

for batch_index, batch_dict in enumerate(batch_generator):
    # compute the output
    y_pred =  classifier(batch_dict['x_surname'])
    
    # compute the loss
    loss = loss_func(y_pred, batch_dict['y_nationality'])
    loss_t = loss.item()
    running_loss += (loss_t - running_loss) / (batch_index + 1)

    # compute the accuracy
    acc_t = compute_accuracy(y_pred, batch_dict['y_nationality'])
    running_acc += (acc_t - running_acc) / (batch_index + 1)

train_state['test_loss'] = running_loss
train_state['test_acc'] = running_acc
print("Test loss: {};".format(train_state['test_loss']))
print("Test Accuracy: {}".format(train_state['test_acc']))
Test loss: 1.9216371824343998;
Test Accuracy: 60.7421875

We can see that the test accuracy is higher than MLPs. Next, We will use the CNN model to do the inference

def predict_nationality(surname, classifier, vectorizer):
    """Predict the nationality from a new surname
    
    Args:
        surname (str): the surname to classifier
        classifier (SurnameClassifer): an instance of the classifier
        vectorizer (SurnameVectorizer): the corresponding vectorizer
    Returns:
        a dictionary with the most likely nationality and its probability
    """
    vectorized_surname = vectorizer.vectorize(surname)
    vectorized_surname = torch.tensor(vectorized_surname).unsqueeze(0)
    result = classifier(vectorized_surname, apply_softmax=True)

    probability_values, indices = result.max(dim=1)
    index = indices.item()

    predicted_nationality = vectorizer.nationality_vocab.lookup_index(index)
    probability_value = probability_values.item()

    return {'nationality': predicted_nationality, 'probability': probability_value}
new_surname = input("Enter a surname to classify: ")
classifier = classifier.cpu()
prediction = predict_nationality(new_surname, classifier, vectorizer)
print("{} -> {} (p={:0.2f})".format(new_surname,
                                    prediction['nationality'],
                                    prediction['probability']))
Enter a surname to classify:  McMahan


McMahan -> Irish (p=1.00)
new_surname = input("Enter a surname to classify: ")
classifier = classifier.cpu()
prediction = predict_nationality(new_surname, classifier, vectorizer)
print("{} -> {} (p={:0.2f})".format(new_surname,
                                    prediction['nationality'],
                                    prediction['probability']))

def predict_topk_nationality(surname, classifier, vectorizer, k=5):
    """Predict the top K nationalities from a new surname
    
    Args:
        surname (str): the surname to classifier
        classifier (SurnameClassifer): an instance of the classifier
        vectorizer (SurnameVectorizer): the corresponding vectorizer
        k (int): the number of top nationalities to return
    Returns:
        list of dictionaries, each dictionary is a nationality and a probability
    """
    
    vectorized_surname = vectorizer.vectorize(surname)
    vectorized_surname = torch.tensor(vectorized_surname).unsqueeze(dim=0)
    prediction_vector = classifier(vectorized_surname, apply_softmax=True)
    probability_values, indices = torch.topk(prediction_vector, k=k)
    
    # returned size is 1,k
    probability_values = probability_values[0].detach().numpy()
    indices = indices[0].detach().numpy()
    
    results = []
    for kth_index in range(k):
        nationality = vectorizer.nationality_vocab.lookup_index(indices[kth_index])
        probability_value = probability_values[kth_index]
        results.append({'nationality': nationality, 
                        'probability': probability_value})
    return results

new_surname = input("Enter a surname to classify: ")

k = int(input("How many of the top predictions to see? "))
if k > len(vectorizer.nationality_vocab):
    print("Sorry! That's more than the # of nationalities we have.. defaulting you to max size :)")
    k = len(vectorizer.nationality_vocab)
    
predictions = predict_topk_nationality(new_surname, classifier, vectorizer, k=k)

print("Top {} predictions:".format(k))
print("===================")
for prediction in predictions:
    print("{} -> {} (p={:0.2f})".format(new_surname,
                                        prediction['nationality'],
                                        prediction['probability']))
Enter a surname to classify:  McMahan


McMahan -> Irish (p=1.00)


Enter a surname to classify:  McMahan
How many of the top predictions to see?  5


Top 5 predictions:
===================
McMahan -> Irish (p=1.00)
McMahan -> English (p=0.00)
McMahan -> Russian (p=0.00)
McMahan -> Scottish (p=0.00)
McMahan -> Czech (p=0.00)

5 总结

鉴于英文水平一般,总结好好用中文写,作为本次实验和作业的一个句号。通过这次实验任务,我学习了如何使用多层感知器(MLP)进行姓氏分类,并探索不同类型的神经网络层对数据张量大小和形状的影响,其中主要是多层感知机网络和卷积神经网络。此外,还尝试在模型中添加了dropout层,观察它对分类结果的影响。

在使用使用多层感知器进行姓氏分类时候,以一个简单的姓氏分类任务为例,使用PyTorch实现了一个多层感知器模型。首先,我们准备好姓氏分类的数据集。然后定义一个简单的多层感知器模型,用于姓氏分类。下面是网络的举例:

import torch.nn as nn
import torch.nn.functional as F

class SurnameClassifier(nn.Module):
    def __init__(self, input_dim, hidden_dim, output_dim):
        super(SurnameClassifier, self).__init__()
        self.fc1 = nn.Linear(input_dim, hidden_dim)
        self.fc2 = nn.Linear(hidden_dim, output_dim)
    
    def forward(self, x):
        x = F.relu(self.fc1(x))
        x = self.fc2(x)
        return x

# 假设输入维度为10,隐藏层维度为50,输出维度为类别数量(假设为5)
input_dim = 10
hidden_dim = 50
output_dim = 5

model = SurnameClassifier(input_dim, hidden_dim, output_dim)

然后进行训练模型:

import torch.optim as optim

criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=0.001)

# 训练模型
num_epochs = 10

for epoch in range(num_epochs):
    for surnames, labels in train_loader:
        # 假设输入数据已经被预处理成固定维度的张量
        surnames = torch.randn(len(surnames), input_dim)
        labels = torch.tensor(labels)
        
        optimizer.zero_grad()
        outputs = model(surnames)
        loss = criterion(outputs, labels)
        loss.backward()
        optimizer.step()
        
    print(f'Epoch {epoch+1}/{num_epochs}, Loss: {loss.item()}')

关于神经网络层对张量大小和形状的影响

在多层感知器中,线性层(全连接层)会改变输入张量的形状。可以如下面代码的输出展示会更为直观。

import torch
from torch.utils.data import Dataset, DataLoader
from sklearn.preprocessing import LabelEncoder
from sklearn.model_selection import train_test_split

class SurnameDataset(Dataset):
    def __init__(self, surnames, labels):
        self.surnames = surnames
        self.labels = labels
        self.label_encoder = LabelEncoder()
        self.encoded_labels = self.label_encoder.fit_transform(labels)
    
    def __len__(self):
        return len(self.surnames)
    
    def __getitem__(self, idx):
        return self.surnames[idx], self.encoded_labels[idx]

# 假设我们有姓氏数据和对应的标签
surnames = ["Smith", "Johnson", "Williams", "Brown", "Jones"]
labels = ["English", "English", "English", "English", "English"]

dataset = SurnameDataset(surnames, labels)
train_data, test_data = train_test_split(dataset, test_size=0.2, random_state=42)

train_loader = DataLoader(train_data, batch_size=2, shuffle=True)
test_loader = DataLoader(test_data, batch_size=2, shuffle=False)

import torch.nn as nn
import torch.nn.functional as F

class SurnameClassifier(nn.Module):
    def __init__(self, input_dim, hidden_dim, output_dim):
        super(SurnameClassifier, self).__init__()
        self.fc1 = nn.Linear(input_dim, hidden_dim)
        self.fc2 = nn.Linear(hidden_dim, output_dim)
    
    def forward(self, x):
        x = F.relu(self.fc1(x))
        x = self.fc2(x)
        return x

# 假设输入维度为10,隐藏层维度为50,输出维度为类别数量(假设为5)
input_dim = 10
hidden_dim = 50
output_dim = 5

model = SurnameClassifier(input_dim, hidden_dim, output_dim)

# 假设输入维度为10,隐藏层维度为50,输出维度为类别数量(假设为5)
input_dim = 10
hidden_dim = 50
output_dim = 5

x = torch.randn(2, input_dim)  # 一个batch中有2个样本,每个样本的维度为input_dim
print(f'Input shape: {x.shape}')

x = F.relu(model.fc1(x))
print(f'After first layer: {x.shape}')

x = model.fc2(x)
print(f'After second layer: {x.shape}')
Input shape: torch.Size([2, 10])
After first layer: torch.Size([2, 50])
After second layer: torch.Size([2, 5])

在MLP中,我们还在模型中添加Dropout层,并观察其对结果的影响。

通过这几个任务,我掌握了如何使用多层感知器进行分类,并了解来了不同神经网络层对张量大小和形状的影响。还了解了Dropout层如何帮助减少过拟合,提高模型的泛化能力。

标签:NLP,surname,Xinhui,index,self,MLP,train,size,vectorizer
From: https://blog.csdn.net/Ahu_Wxh_Ai/article/details/139564281

相关文章

  • 将stanfordcorenlp的tokenizer换成自定义的(或用stanfordcorenlp对自定义tokenizer分词
    本文是基于中文语料做的,对于英文语料应该也是同理,即同样适用的。分析stanfordcorenlp的分词结果,可以发现,它好像是对最小的中文词进行分词,即其对中文的分词粒度很小,这对于某些nlp场景可能就不太合适了,自然的就想到能不能将stanfordcorenlp中用于分词的tokenizer替换掉,替换成自......
  • 细说NLP中的Embedding层
    文章目录前言一、为什么要引入Embedding层二、Embedding层是怎么发挥作用的?三、感受Embedding的强大四、为什么理解Embedding的底层原理?总结前言在构建高效的自然语言处理模型时,Embedding层是不可或缺的组成部分。它不仅可以帮助我们捕获词汇之间的语义关系,还能提高......
  • NLP--词袋模型
    词袋模型如同所有单词打散放到一个袋子中,因此这种模型无法估计语义和语序问题,每个单词都是独立的。1.文本分词:调用jieba库,使用精确模式对每个句子进行分词,并存入列表。2.去除停用词:遍历停用词文件的每一行,删除字符串头和尾的空白字符(包括\n,\r,\t等),加到停用词集合里。然后遍历......
  • NLP--关键词
        在去停用词后的文本中进行词频统计和关键词统计以及词云图显示,来进行文本的关键词提取,让人一目了然。1.词频统计    统计文本中多次出现的词语,来寻找文章中的关键词,因为多次出现很可能就是关键内容。调用统计数量的Counter库和用来分词的jieba库。观察出现......
  • 用 pytorch 从零开始实现单隐层 MLP
    我的代码如下:importtorchfromtorchvisionimporttransformsfromtorch.utilsimportdata导入torchvision#==============load数据集defget_dataloader_workers():返回4defload_data_fashion_mnist(batch_size,resize=None):trans=[transforms.ToT......
  • NLP--情感词典
    1.建立积极情感词典,消极情感词典,程度词词典和否定词词典。2.调用jieba进行分词。3.遍历分词后的文本列表。进行计算分值。4.输出最后的积极情感分值,消极情感分值和情感总分值。优点:基于词典和规则的模式可以随时添加和删除词语和规则,在情感词覆盖率和准确率高的情况下,情感......
  • NLP--情感分析第一步分词
       在汉语中,词通常认为是一个或一个以上的文字构成的有意义的句子的最小单位。在英文中根据空格就可以直接分词。中文分词比英文难很多,可以采用基于词典分词,基于语法分词,基于统计分词。   常用的分词工具是jieba,又叫结巴,当将一个一个词分开时,读起来就像结巴一样,十......
  • EMNLP2024投稿
    AbstractEMNLP2024的DDL是6月15日,没有匿名期,需要提交到OpenReview平台。文章类型包括longpaper和shortpaper.基本上只认longpaper.1.Overview接收long和shortpapers,包含传统的研究结果,也包含负向的findings,某一个领域的survey,新的资源的宣告,一个观点,新颖的insights.......
  • 【ACM出版,多高校单位支持 |人工智能等计算机领域 ei 会议,EI Compendex, Scopus检索】2
    2024人工智能与自然语言处理国际学术会议(AINLP2024)将于2024年7月19-21日在中国·珠海召开,该会议作为第四届人工智能、自动化与高性能计算国际会议(AIAHPC2024)分会场召开。本次会议主要围绕“人工智能与自然语言处理”的最新研究展开,旨在荟聚世界各地该领域的专家、学者、研究......
  • 深度学习-nlp-微调BERT--82
    目录importtorchimporttorch.nnasnnfromtorch.utils.dataimportTensorDataset,DataLoader,RandomSampler,SequentialSamplerfromsklearn.model_selectionimporttrain_test_splitfromtransformersimportBertTokenizer,BertConfigfromtransformersimpo......