首页 > 其他分享 >手把手制作Vue3+Flask全栈项目 全栈开发之路实战篇 问卷网站(五)数据处理

手把手制作Vue3+Flask全栈项目 全栈开发之路实战篇 问卷网站(五)数据处理

时间:2024-06-08 21:06:02浏览次数:23  
标签:实战篇 const Flask question value 全栈 answer response stage

全栈开发一条龙——前端篇
第一篇:框架确定、ide设置与项目创建
第二篇:介绍项目文件意义、组件结构与导入以及setup的引入。
第三篇:setup语法,设置响应式数据。
第四篇:数据绑定、计算属性和watch监视
第五篇 : 组件间通信及知识补充
第六篇:生命周期和自定义hooks
第七篇:路由
第八篇:传参
第九篇:插槽,常用api和全局api。
全栈开发一条龙——全栈篇
第一篇:初识Flask&MySQL实现前后端通信
第二篇: sql操作、发送http请求和邮件发送
第三篇:全栈实现发送验证码注册账号
第四篇:图片验证码及知识补充
全栈开发一条龙——实战篇

第一篇:项目建立与login页面
第二篇:建立管理员后台和添加题目功能实现
第三篇:完善管理员后台
第四篇:用户视图

本篇将完成数据处理页面

文章目录

后端

数据处理工具

我们先来写数据处理的工具,我们的思路是从数据库中取出我们之前存储的答案序列,然后分析到达不同阶段的人数和相关系数等等。
我们先从数据库中获取数据

                raw_list = db.session.execute( text("select * from data_analysis") ).fetchall()
                answer_list = list_row2list_dic(raw_list)
                temp = sql_ex()
                question_info = temp.search()

接下来进行基础的数据统计,各个题目的答题次数,平均分等

                # 初始化每道题的选项计数和分数统计
                question_stats = []
                for question in question_info:
                    question_stats.append({
                        'question': question['questions'],
                        'choice_counts': {'A': 0, 'B': 0, 'C': 0, 'D': 0},
                        'total_score': 0,
                        'response_count': 0,
                        'points': {
                            'A': question['point_a'],
                            'B': question['point_b'],
                            'C': question['point_c'],
                            'D': question['point_d']
                        }
                    })

                # 统计每个选项的选择次数和总分
                for answer in answer_list:
                    answer_str = answer['answer']
                    for i, char in enumerate(answer_str):
                        if char in 'ABCD':
                            question_stats[i]['choice_counts'][char] += 1
                            question_stats[i]['total_score'] += question_stats[i]['points'][char]
                            question_stats[i]['response_count'] += 1

                # 计算每道题的平均分
                for stats in question_stats:
                    if stats['response_count'] > 0:
                        stats['average_score'] = stats['total_score'] / stats['response_count']
                    else:
                        stats['average_score'] = 0

我们可以使用以下代码来查看处理的情况,当然,最后需要把他们注释掉。


                # 输出结果 question_stats
                # for stats in question_stats:
                #     print(f"Question: {stats['question']}")
                #     print(f"Choice Counts: {stats['choice_counts']}")
                #     print(f"Average Score: {stats['average_score']:.2f}")
                #     print('-' + '-' * 50)
                #输出格式:[{'question': '惺惺惜惺惺哈哈哈哈和和和和和和和和谢谢谢谢选项下下下下下下下下下下下下下下下下', 'choice_counts': {'A': 4, 'B': 0, 'C': 0, 'D': 1}, 'total_score': 3, 'response_count': 5, 'points': {'A': 0, 'B': 1, 'C': 2, 'D': 3}, 'average_score': 0.6}, {'question': 'csy——beautiful!!', 'choice_counts': {'A': 1, 'B': 1, 'C': 1, 'D': 2}, 'total_score': 9, 'response_count': 5, 'points': {'A': 0, 'B': 1, 'C': 2, 'D': 3}, 'average_score': 1.8}, {'question': '1', 'choice_counts': {'A': 0, 'B': 0, 'C': 1, 'D': 1}, 'total_score': 5, 'response_count': 2, 'points': {'A': 0, 'B': 1, 'C': 2, 'D': 3}, 'average_score': 2.5}, {'question': 'huaidan no', 'choice_counts': {'A': 1, 'B': 0, 'C': 0, 'D': 1}, 'total_score': 3, 'response_count': 2, 'points': {'A': 0, 'B': 1, 'C': 2, 'D': 3}, 'average_score': 1.5}, {'question': '8的合伙人发', 'choice_counts': {'A': 0, 'B': 0, 'C': 0, 'D': 1}, 'total_score': 3, 'response_count': 1, 'points': {'A': 0, 'B': 1, 'C': 2, 'D': 3}, 'average_score': 3.0}, {'question': '9ehwc', 'choice_counts': {'A': 0, 'B': 0, 'C': 0, 'D': 1}, 'total_score': 3, 'response_count': 1, 'points': {'A': 0, 'B': 1, 'C': 2, 'D': 3}, 'average_score': 3.0}, {'question': '接口', 'choice_counts': {'A': 0, 'B': 0, 'C': 0, 'D': 1}, 'total_score': 4, 'response_count': 1, 'points': {'A': 1, 'B': 2, 'C': 3, 'D': 4}, 'average_score': 4.0}]

然后我们统计达到各个stage的人数,逻辑是只要回答了任意一道stage3的题目,这个人就达到了stage3的阶段,counter++

                #统计stage人数
                # 初始化每个阶段的回答人数统计
                stage_answer_counts = {1: 0, 2: 0, 3: 0, 4: 0}

                # 统计每个阶段回答了至少一个问题的人数
                for answer in answer_list:
                    answer_str = answer['answer']
                    answered_stages = set()
                    for i, char in enumerate(answer_str):
                        if char in 'ABCD':
                            stage = question_info[i]['stage']
                            answered_stages.add(stage)
                    for stage in answered_stages:
                        stage_answer_counts[stage] += 1
                 
                 #  stage_answer_counts  output:{1: 5, 2: 2, 3: 1, 4: 1}

最后,我们进行相关性分析,这里我们需要使用numpy和pandas


                answer_matrix = []
                for answer in answer_list:
                    answer_str = answer['answer']
                    answer_row = []
                    for char in answer_str:
                        if char == 'A':
                            answer_row.append(1)
                        elif char == 'B':
                            answer_row.append(2)
                        elif char == 'C':
                            answer_row.append(3)
                        elif char == 'D':
                            answer_row.append(4)
                        else:
                            answer_row.append(0)
                    answer_matrix.append(answer_row)

                # 转换为DataFrame
                df = pd.DataFrame(answer_matrix, columns=[f'Q{i+1}' for i in range(len(answer_matrix[0]))])

                # 计算相关性矩阵
                correlation_matrix = df.corr()

这里我们需要先把内容转为pandas特定的格式,然后调用库。最后输出的结果是output type <class ‘pandas.core.frame.DataFrame’>格式的,内容是

                #     Q1        Q2        Q3        Q4        Q5        Q6        Q7
                # Q1  1.000000  0.514496  0.745601  0.968246  1.000000  1.000000  1.000000
                # Q2  0.514496  1.000000  0.826234  0.664211  0.514496  0.514496  0.514496
                # Q3  0.745601  0.826234  1.000000  0.888523  0.745601  0.745601  0.745601
                # Q4  0.968246  0.664211  0.888523  1.000000  0.968246  0.968246  0.968246
                # Q5  1.000000  0.514496  0.745601  0.968246  1.000000  1.000000  1.000000
                # Q6  1.000000  0.514496  0.745601  0.968246  1.000000  1.000000  1.000000
                # Q7  1.000000  0.514496  0.745601  0.968246  1.000000  1.000000  1.000000
                

这样的矩阵,至此,我们的处理工具就做好了,接下来我们需要完善后端节后,使得前端可以访问并获取到处理好的数据。

蓝图

    def post(self):
        temp = answer_ex()
        question,stage,rela = temp.search()
        response = {
        'question': question,
        'stage': stage,
        'rela': rela.to_dict()
                    }
        return jsonify({"errcode": 0, "msg": response})

如上就做好了,这里我们将举证转化为dict,方便我们前端展示数据。

前端

前端我们需要做以下几件事,展示基础数据,根据相关性数据绘制图表。这需要用到chart.js 我们可以用npm i一键安装。
我们的展示思路就是把一个个问题做成card,一一展示。

模板

<template>
  <div class="container">


    <div class="header">
      <button class="custom-button" @click="rt">返回编辑页</button>
    </div>


    <h1>数据统计</h1>

    <div class="card">
      <h2>数据总览</h2>
      <div class="data-row"><strong>总问卷数:</strong> {{ stage[1] }}</div>
      <h3>累计人数统计</h3>
      <div class="data-row"><strong>二阶段以上:</strong> {{ stage[2] }}</div>
      <div class="data-row"><strong>三阶段以上:</strong> {{ stage[3] }}</div>
      <div class="data-row"><strong>四阶段以上:</strong> {{ stage[4] }}</div>
      <h3>阶段人数统计</h3>
      <div class="data-row"><strong>一阶段人数:</strong> {{ stage[1]-stage[2] }}</div>
      <div class="data-row"><strong>二阶段人数:</strong> {{ stage[2] - stage[3]}}</div>
      <div class="data-row"><strong>三阶段人数:</strong> {{ stage[3] - stage[4] }}</div>
      <div class="data-row"><strong>四阶段人数:</strong> {{ stage[4] }}</div>
      <h2>人数分布图表</h2>
      <div class="chart-container">
        <canvas id="stage-chart"></canvas>
      </div>
    </div>
    <h1>题目详情</h1>
    <div class="card" v-for="(item, index) in question" :key="index">
      <h2>{{ index + 1 }}. {{ item.question }}</h2>
      <div class="data-row"><strong>答题统计:</strong></div>
      <div class="choice">
        <div>A: {{ item.choice_counts.A }}</div>
        <div>B: {{ item.choice_counts.B }}</div>
        <div>C: {{ item.choice_counts.C }}</div>
        <div>D: {{ item.choice_counts.D }}</div>
      </div>
      <div class="data-row"><strong>回答次数:</strong> {{ item.response_count }}</div>
      <div class="data-row"><strong>均分(期望为1.5):</strong> {{ item.average_score }}</div>
      <h3>题目相关性
        <button @click="toggleRelaVisibility(index)" class="bt">
          {{ relaVisible[index] ? '隐藏相关系数' : '显示相关系数' }}
        </button>
      </h3>
      <ul v-if="relaVisible[index]">
        <li v-for="(value, key) in getRelaValues(index)" :key="key">与{{ key }}的相关系数为: {{ value }}</li>
      </ul>
      <canvas :id="'chart-' + index"></canvas>
    </div>
  </div>
</template>

这里,我们定义了一个标题,枚举了各个问题的card以展示。

脚本

<script setup>
import { ref, onMounted, nextTick } from 'vue';
import axios from 'axios';
import { Chart, CategoryScale, BarController, BarElement, PointElement, LinearScale, Title, PieController, ArcElement, Tooltip, Legend } from 'chart.js';
import { useRouter } from 'vue-router';
import { useUrlStore } from '@/store/urlStore'; // 确保路径正确
const urlStore = useUrlStore(); // 使用URL Store

const router = useRouter();
Chart.register(
  CategoryScale,
  BarController,
  BarElement,
  PointElement,
  LinearScale,
  Title,
  PieController,
  ArcElement,
  Tooltip,
  Legend
);

const question = ref([]);
const stage = ref({});
const rela = ref({});
const relaVisible = ref([]);

const fetchData = async () => {
  try {
    const response = await axios.post(urlStore.urls.data);
    if (response.data.errcode === 0) {
      question.value = response.data.msg.question;
      stage.value = response.data.msg.stage;
      rela.value = response.data.msg.rela;
      relaVisible.value = new Array(question.value.length).fill(false);
      await nextTick();
      renderCharts();
      renderStageChart();
    } else {
      console.error('Error fetching data:', response.data.msg);
    }
  } catch (error) {
    console.error('Error fetching data:', error);
  }
};

const formatNumber = (number) => number.toFixed(3);

const getRelaValues = (index) => {
  const key = `Q${index + 1}`;
  const values = rela.value[key] || {};
  const formattedValues = {};
  Object.keys(values).forEach(k => {
    formattedValues[k] = formatNumber(values[k]);
  });
  return formattedValues;
};

const toggleRelaVisibility = (index) => {
  relaVisible.value[index] = !relaVisible.value[index];
};

const renderCharts = () => {
  question.value.forEach((item, index) => {
    const ctx = document.getElementById('chart-' + index).getContext('2d');
    const correlations = getRelaValues(index);
    const correlationValues = Object.values(correlations).map(value => parseFloat(value));
    const backgroundColors = correlationValues.map(value =>
      value < 0 ? 'rgba(255, 99, 132, 0.5)' : 'rgba(75, 192, 192, 0.5)'
    );
    new Chart(ctx, {
      type: 'bar',
      data: {
        labels: Object.keys(correlations),
        datasets: [{
          label: `Correlations for Q${index + 1}`,
          data: correlationValues,
          backgroundColor: backgroundColors,
          borderColor: 'rgba(75, 192, 192, 1)',
          borderWidth: 1
        }]
      },
      options: {
        responsive: true,
        scales: {
          x: {
            type: 'category',
            display: true,
            title: {
              display: true,
              text: 'Questions'
            }
          },
          y: {
            type: 'linear',
            beginAtZero: true,
            display: true,
            title: {
              display: true,
              text: 'Correlation Value'
            }
          }
        }
      }
    });
  });
};

const renderStageChart = () => {
  const ctx = document.getElementById('stage-chart').getContext('2d');
  const stageData = [
    stage.value['1'] - stage.value['2'],
    stage.value['2'] - stage.value['3'],
    stage.value['3'] - stage.value['4'],
    stage.value['4']
  ];
  new Chart(ctx, {
    type: 'pie',
    data: {
      labels: ['stage1', 'stage2', 'stage3', 'stage4'],
      datasets: [{
        data: stageData,
        backgroundColor: [
          'rgba(255, 99, 132, 0.6)',
          'rgba(54, 162, 235, 0.6)',
          'rgba(255, 206, 86, 0.6)',
          'rgba(75, 192, 192, 0.6)'
        ],
        borderColor: [
          'rgba(255, 99, 132, 1)',
          'rgba(54, 162, 235, 1)',
          'rgba(255, 206, 86, 1)',
          'rgba(75, 192, 192, 1)'
        ],
        borderWidth: 1
      }]
    },
    options: {
      responsive: true,
      plugins: {
        legend: {
          position: 'right'
        },
        tooltip: {
          enabled: true
        }
      }
    }
  });
};

function rt(){
  alert("切换成功,一秒后跳转编辑页面");
  setTimeout(() => { router.push({ path: "/home" }) }, 1000);
}

onMounted(fetchData);
</script>

我们脚本实现的逻辑就是先访问后端接口获取数据,然后解析数据,绘制图表。我们绘制了一个pie图,用于展示各个阶段人数。也制作了一个柱状图来展示各个题目之间的相关性。

完整前端代码

<template>
  <div class="container">


    <div class="header">
      <button class="custom-button" @click="rt">返回编辑页</button>
    </div>


    <h1>数据统计</h1>

    <div class="card">
      <h2>数据总览</h2>
      <div class="data-row"><strong>总问卷数:</strong> {{ stage[1] }}</div>
      <h3>累计人数统计</h3>
      <div class="data-row"><strong>二阶段以上:</strong> {{ stage[2] }}</div>
      <div class="data-row"><strong>三阶段以上:</strong> {{ stage[3] }}</div>
      <div class="data-row"><strong>四阶段以上:</strong> {{ stage[4] }}</div>
      <h3>阶段人数统计</h3>
      <div class="data-row"><strong>一阶段人数:</strong> {{ stage[1]-stage[2] }}</div>
      <div class="data-row"><strong>二阶段人数:</strong> {{ stage[2] - stage[3]}}</div>
      <div class="data-row"><strong>三阶段人数:</strong> {{ stage[3] - stage[4] }}</div>
      <div class="data-row"><strong>四阶段人数:</strong> {{ stage[4] }}</div>
      <h2>人数分布图表</h2>
      <div class="chart-container">
        <canvas id="stage-chart"></canvas>
      </div>
    </div>
    <h1>题目详情</h1>
    <div class="card" v-for="(item, index) in question" :key="index">
      <h2>{{ index + 1 }}. {{ item.question }}</h2>
      <div class="data-row"><strong>答题统计:</strong></div>
      <div class="choice">
        <div>A: {{ item.choice_counts.A }}</div>
        <div>B: {{ item.choice_counts.B }}</div>
        <div>C: {{ item.choice_counts.C }}</div>
        <div>D: {{ item.choice_counts.D }}</div>
      </div>
      <div class="data-row"><strong>回答次数:</strong> {{ item.response_count }}</div>
      <div class="data-row"><strong>均分(期望为1.5):</strong> {{ item.average_score }}</div>
      <h3>题目相关性
        <button @click="toggleRelaVisibility(index)" class="bt">
          {{ relaVisible[index] ? '隐藏相关系数' : '显示相关系数' }}
        </button>
      </h3>
      <ul v-if="relaVisible[index]">
        <li v-for="(value, key) in getRelaValues(index)" :key="key">与{{ key }}的相关系数为: {{ value }}</li>
      </ul>
      <canvas :id="'chart-' + index"></canvas>
    </div>
  </div>
</template>

<script setup>
import { ref, onMounted, nextTick } from 'vue';
import axios from 'axios';
import { Chart, CategoryScale, BarController, BarElement, PointElement, LinearScale, Title, PieController, ArcElement, Tooltip, Legend } from 'chart.js';
import { useRouter } from 'vue-router';
import { useUrlStore } from '@/store/urlStore'; // 确保路径正确
const urlStore = useUrlStore(); // 使用URL Store

const router = useRouter();
Chart.register(
  CategoryScale,
  BarController,
  BarElement,
  PointElement,
  LinearScale,
  Title,
  PieController,
  ArcElement,
  Tooltip,
  Legend
);

const question = ref([]);
const stage = ref({});
const rela = ref({});
const relaVisible = ref([]);

const fetchData = async () => {
  try {
    const response = await axios.post(urlStore.urls.data);
    if (response.data.errcode === 0) {
      question.value = response.data.msg.question;
      stage.value = response.data.msg.stage;
      rela.value = response.data.msg.rela;
      relaVisible.value = new Array(question.value.length).fill(false);
      await nextTick();
      renderCharts();
      renderStageChart();
    } else {
      console.error('Error fetching data:', response.data.msg);
    }
  } catch (error) {
    console.error('Error fetching data:', error);
  }
};

const formatNumber = (number) => number.toFixed(3);

const getRelaValues = (index) => {
  const key = `Q${index + 1}`;
  const values = rela.value[key] || {};
  const formattedValues = {};
  Object.keys(values).forEach(k => {
    formattedValues[k] = formatNumber(values[k]);
  });
  return formattedValues;
};

const toggleRelaVisibility = (index) => {
  relaVisible.value[index] = !relaVisible.value[index];
};

const renderCharts = () => {
  question.value.forEach((item, index) => {
    const ctx = document.getElementById('chart-' + index).getContext('2d');
    const correlations = getRelaValues(index);
    const correlationValues = Object.values(correlations).map(value => parseFloat(value));
    const backgroundColors = correlationValues.map(value =>
      value < 0 ? 'rgba(255, 99, 132, 0.5)' : 'rgba(75, 192, 192, 0.5)'
    );
    new Chart(ctx, {
      type: 'bar',
      data: {
        labels: Object.keys(correlations),
        datasets: [{
          label: `Correlations for Q${index + 1}`,
          data: correlationValues,
          backgroundColor: backgroundColors,
          borderColor: 'rgba(75, 192, 192, 1)',
          borderWidth: 1
        }]
      },
      options: {
        responsive: true,
        scales: {
          x: {
            type: 'category',
            display: true,
            title: {
              display: true,
              text: 'Questions'
            }
          },
          y: {
            type: 'linear',
            beginAtZero: true,
            display: true,
            title: {
              display: true,
              text: 'Correlation Value'
            }
          }
        }
      }
    });
  });
};

const renderStageChart = () => {
  const ctx = document.getElementById('stage-chart').getContext('2d');
  const stageData = [
    stage.value['1'] - stage.value['2'],
    stage.value['2'] - stage.value['3'],
    stage.value['3'] - stage.value['4'],
    stage.value['4']
  ];
  new Chart(ctx, {
    type: 'pie',
    data: {
      labels: ['stage1', 'stage2', 'stage3', 'stage4'],
      datasets: [{
        data: stageData,
        backgroundColor: [
          'rgba(255, 99, 132, 0.6)',
          'rgba(54, 162, 235, 0.6)',
          'rgba(255, 206, 86, 0.6)',
          'rgba(75, 192, 192, 0.6)'
        ],
        borderColor: [
          'rgba(255, 99, 132, 1)',
          'rgba(54, 162, 235, 1)',
          'rgba(255, 206, 86, 1)',
          'rgba(75, 192, 192, 1)'
        ],
        borderWidth: 1
      }]
    },
    options: {
      responsive: true,
      plugins: {
        legend: {
          position: 'right'
        },
        tooltip: {
          enabled: true
        }
      }
    }
  });
};

function rt(){
  alert("切换成功,一秒后跳转编辑页面");
  setTimeout(() => { router.push({ path: "/home" }) }, 1000);
}

onMounted(fetchData);
</script>

<style scoped>
.chart-container {
  width: 60%;
  margin: auto;
}

.header {
  width: 100%;
  display: flex;
  justify-content: center;
  align-items: center;
  position: relative;
}

.custom-button {
  position: absolute;
  top: 0;
  right: 0;
  background-color: #f0adcd;
  color: white;
  border: none;
  width: 120px;
  height: 30px;
  border-radius: 4px;
  cursor: pointer;
  font-size: 12px;
  display: flex;
  justify-content: center;
  align-items: center;
}

.custom-button:hover {
  background-color: #e5347d;
}

.bt {
  background-color: #77d6dd;
  width: 150px;
  height: 29%;
}

.container {
  padding: 20px;
  font-family: 'Arial', sans-serif;
  color: #333;
  display: flex;
  flex-direction: column;
  width: 700px;
  margin-left: 15vw;
}

h1 {
  font-size: 32px;
  text-align: center;
  margin-bottom: 40px;
  color: #2c3e50;
}

.card {
  background-color: #f9f9f9;
  border: 1px solid #ddd;
  border-radius: 8px;
  padding: 20px;
  margin-bottom: 40px;
  box-shadow: 0 2px 4px rgba(0, 0, 0, 0.1);
  transition: transform 0.3s, box-shadow 0.3s;
}

.card:hover {
  transform: scale(1.005);
  box-shadow: 0 4px 8px rgba(0, 0, 0, 0.2);
}

.card h2 {
  font-size: 24px;
  color: #3498db;
  margin-bottom: 10px;
}

.data-row {
  font-size: 16px;
  margin: 8px 0;
}

.choice {
  margin-left: 20px;
}

.card h3 {
  font-size: 20px;
  color: #2c3e50;
  margin-top: 20px;
}

.card ul {
  list-style-type: none;
  padding: 0;
}

.card li {
  font-size: 14px;
  color: #555;
  margin-bottom: 5px;
}

canvas {
  margin-top: 20px;
}
</style>

以上是前端的完整代码,你可以自己修改样式。

效果展示

在questionlist里加入一个按钮,来跳转数据处理页面,很简单就不说了。

标签:实战篇,const,Flask,question,value,全栈,answer,response,stage
From: https://blog.csdn.net/m0_74475812/article/details/139521742

相关文章

  • C++全栈聊天项目(20) 聊天列表动态加载
    聊天列表动态加载如果要动态加载聊天列表内容,我们可以在列表的滚动区域捕获鼠标滑轮事件,并且在滚动到底部的时候我们发送一个加载聊天用户的信号boolChatUserList::eventFilter(QObject*watched,QEvent*event){//检查事件是否是鼠标悬浮进入或离开if(wat......
  • C++全栈聊天项目(21) 滚动聊天布局设计
    滚动聊天布局设计我们的聊天布局如下图最外层的是一个chatview(黑色),chatview内部在添加一个MainLayout(蓝色),MainLayout内部添加一个scrollarea(红色),scrollarea内部包含一个widget(绿色),同时也包含一个HLayout(紫色)用来浮动显示滚动条。widget内部包含一个垂直布局Vlayout(黄......
  • 【第12章】SpringBoot实战篇之文件上传(含阿里云OSS上传)
    文章目录前言一、本地文件上传二、阿里云OSS上传1.环境准备2.安装SDK3.使用长期访问凭证3.1获取RAM用户的访问密钥3.2配置RAM用户的访问密钥(Linux)3.3从环境变量中获取RAM用户的访问密钥4.工具类5.使用总结前言本章节介绍本地文件上传和阿里云OSS上传。一......
  • 【第11章】SpringBoot实战篇之文章(下)含条件分页
    文章目录前言一、文章列表查询1.ArticleController2.ArticleService二、文章查询1.ArticleController2.ArticleService三、文章更新1.ArticleController2.ArticleService四、文章删除1.ArticleController2.ArticleService五、文章列表查询(条件分页)1.Artic......
  • 初始flask
    安装pipinstallflask一个最简单的flask页面这样通过右键直接运行py文件即可,文件名必须叫做app.pyfromflaskimportFlaskapp=Flask(__name__)#@app.route('/',methods=(['get','post']))route第一个是访问的路径,methods等于请求的方法。@app.get('/')def......
  • [GHCTF 2024 新生赛]理想国 flask session伪造
    忙着毕业论文几天没做题了。进入页面发现几个api接口,注册登录搜索登出4个。利用postman访问注册接口注册。可以看到返回了token,利用token访问login。尝试search页面传入file参数试试能不能目录穿越。得到secret-key,这里有个非预期解,访问/proc/1/environ直接得到flag。......
  • 知乎(1-5期)-AI大模型全栈工程师培养计划,做ChatGPT浪潮中顶尖的超级个体
    知乎(1-5期)-AI大模型全栈工程师培养计划,做ChatGPT浪潮中顶尖的超级个体一.前言:1.AI形式目前人工智能和大模型一定是前景非常广阔的赛道,现在陆续出现的模型训练岗,模型技术岗,像有些大厂已经开始不再招聘JAVA开发,所以关于大模型的岗位一定是雨后春笋的喷发2.程序员自身的发展......
  • Python使用Flask实现api接口
    非常简单实现``fromflaskimportFlask,request,jsonifyapp=Flask(__name__)#处理GET请求的示例@app.route('/get_example',methods=['GET'])defget_example():#获取GET请求中的参数值param1=request.args.get('......
  • Flask项目配置Celery
     service_task/async_tasks/celery_app.pyimportosimportsysBASE_DIR=os.path.dirname(os.path.dirname(os.path.abspath(__file__)))env=os.getenv("env","dev")path=os.path.dirname(os.path.abspath(__file__))sys.path.insert(0,os.......
  • 【第7章】SpringBoot实战篇之用户详细信息
    文章目录前言一、获取用户详细信息1.ThreadLocalUtil2.LoginInceptor3.UserController14.测试二、更新用户基本信息1.ValidatedGroups2.User3.UserController14.service5.测试1.参数校验2.更新测试三、更新用户头像1.UserController12.测试四、更新用户密......