首页 > 其他分享 >利用智普AI大模型进行基于 RAG 的表格数据问答

利用智普AI大模型进行基于 RAG 的表格数据问答

时间:2024-06-06 19:00:04浏览次数:22  
标签:RAG 智普 return AI self content dict kwargs message

前言

最近一直在探索 RAG 相关的技术,刚好尝试了一些国产的大模型,发现智普的大模型用着还挺不错的,因此就尝试用它对表格数据进行问答。

遇到的问题

智普的SDK更新到了2.0的版本,这也就导致原来Langchain的版本无法适配了,需要重新自己写一些代码才可以。

另外,Langchain提供的create_pandas_dataframe_agent 目前有bug,需要绕过去或者自己去实现。

为此,我这边参考了社区提供的代码,整理了一份相对比较简易的方法去实现对表格数据的问答,在泰坦尼克号数据上实测效果还可以。下面分享给大家。

代码

分为主程序代码以及智普大模型实现,这两部分代码。建议使用Python 3.9以上的环境,避免出现环境依赖等问题,也可以直接用python 3.10 的版本。

这段代码,本质上还是依赖了提示词工程,以及一个Python的解释器去工作,因此要慎重,防止python代码解析的问题导致出现一些危险操作

主代码

import pandas as pd
from zhipu_llm import ChatZhipuAI
from langchain_experimental.tools import PythonAstREPLTool
from langchain_core.prompts import PromptTemplate
zhipuai_api_key="替换成自己的API Key"
glm3= "glm-3-turbo"
glm4="glm-4"

chat_zhipu = ChatZhipuAI(
    temperature=0.8,
    api_key=zhipuai_api_key,
    model=glm3
)
df = pd.read_csv("/Users/data/titanic.csv")
tool = PythonAstREPLTool(locals={"df": df})
tools = []
tools.append(tool)
print(tool.invoke("df['fare'].mean()"))

DEFAULT_INSTRUCTION_STR = (
    "1. Convert the query to executable Python code using Pandas.\n"
    "2. The final line of code should be a Python expression that can be called with the `eval()` function.\n"
    "3. The code should represent a solution to the query.\n"
    "4. PRINT ONLY THE EXPRESSION.\n"
    "5. Do not quote the expression.\n"
)
DEFAULT_PANDAS_TMPL = (
    "You are working with a pandas dataframe in Python.\n"
    "The name of the dataframe is `df`.\n"
    "This is the result of `print(df.head())`:\n"
    "{df_str}\n\n"
    "Follow these instructions:\n"
    "{instruction_str}\n"
    "Query: {query_str}\n\n"
    "Expression:"
)
promptTemp = PromptTemplate.from_template(DEFAULT_PANDAS_TMPL)
context = str(df.head(5))
query = "名为Rice, Master. Eugene的船员的年龄是多少"
prompt = promptTemp.format(df_str=context, instruction_str=DEFAULT_INSTRUCTION_STR, query_str=query)
pandas_response_str = chat_zhipu.invoke(prompt)
print(tool.invoke(pandas_response_str.content))

智普大模型

需要新建一个python文件,名为 zhipu_llm.py 和主代码放在一个目录下就可以使用。

"""ZHIPU AI chat models wrapper."""
from __future__ import annotations

import asyncio
import logging
from functools import partial
from importlib.metadata import version
from typing import (
    Any,
    Callable,
    Dict,
    Iterator,
    List,
    Mapping,
    Optional,
    Tuple,
    Type,
    Union,
)

from langchain_core.callbacks import (
    AsyncCallbackManagerForLLMRun,
    CallbackManagerForLLMRun,
)
from langchain_core.language_models.chat_models import (
    BaseChatModel,
    generate_from_stream,
)
from langchain_core.language_models.llms import create_base_retry_decorator
from langchain_core.messages import (
    AIMessage,
    AIMessageChunk,
    BaseMessage,
    BaseMessageChunk,
    ChatMessage,
    ChatMessageChunk,
    HumanMessage,
    HumanMessageChunk,
    SystemMessage,
    SystemMessageChunk,
    ToolMessage,
    ToolMessageChunk,
)
from langchain_core.outputs import (
    ChatGeneration,
    ChatGenerationChunk,
    ChatResult,
)
from langchain_core.pydantic_v1 import BaseModel, Field
from packaging.version import parse

from langchain_core.callbacks.manager import CallbackManagerForLLMRun
from langchain_core.language_models.llms import LLM
logger = logging.getLogger(__name__)

def is_zhipu_v2() -> bool:
    """Return whether zhipu API is v2 or more."""
    _version = parse(version("zhipuai"))
    return _version.major >= 2

def _create_retry_decorator(
    llm: ChatZhipuAI,
    run_manager: Optional[
        Union[AsyncCallbackManagerForLLMRun, CallbackManagerForLLMRun]
    ] = None,
) -> Callable[[Any], Any]:
    import zhipuai

    errors = [
        zhipuai.ZhipuAIError,
        zhipuai.APIStatusError,
        zhipuai.APIRequestFailedError,
        zhipuai.APIReachLimitError,
        zhipuai.APIInternalError,
        zhipuai.APIServerFlowExceedError,
        zhipuai.APIResponseError,
        zhipuai.APIResponseValidationError,
        zhipuai.APITimeoutError,
    ]
    return create_base_retry_decorator(
        error_types=errors, max_retries=llm.max_retries, run_manager=run_manager
    )

def convert_message_to_dict(message: BaseMessage) -> dict:
    """Convert a LangChain message to a dictionary.

    Args:
        message: The LangChain message.

    Returns:
        The dictionary.
    """
    message_dict: Dict[str, Any]
    if isinstance(message, ChatMessage):
        message_dict = {"role": message.role, "content": message.content}
    elif isinstance(message, HumanMessage):
        message_dict = {"role": "user", "content": message.content}
    elif isinstance(message, AIMessage):
        message_dict = {"role": "assistant", "content": message.content}
        if "tool_calls" in message.additional_kwargs:
            message_dict["tool_calls"] = message.additional_kwargs["tool_calls"]
            # If tool calls only, content is None not empty string
            if message_dict["content"] == "":
                message_dict["content"] = None
    elif isinstance(message, SystemMessage):
        message_dict = {"role": "system", "content": message.content}
    elif isinstance(message, ToolMessage):
        message_dict = {
            "role": "tool",
            "content": message.content,
            "tool_call_id": message.tool_call_id,
        }

    else:
        raise TypeError(f"Got unknown type {message}")
    if "name" in message.additional_kwargs:
        message_dict["name"] = message.additional_kwargs["name"]
    return message_dict

def convert_dict_to_message(_dict: Mapping[str, Any]) -> BaseMessage:
    """Convert a dictionary to a LangChain message.

    Args:
        _dict: The dictionary.

    Returns:
        The LangChain message.
    """
    role = _dict.get("role")
    if role == "user":
        return HumanMessage(content=_dict.get("content", ""))
    elif role == "assistant":
        content = _dict.get("content", "") or ""
        additional_kwargs: Dict = {}
        if tool_calls := _dict.get("tool_calls"):
            additional_kwargs["tool_calls"] = tool_calls
        return AIMessage(content=content, additional_kwargs=additional_kwargs)
    elif role == "system":
        return SystemMessage(content=_dict.get("content", ""))
    elif role == "tool":
        additional_kwargs = {}
        if "name" in _dict:
            additional_kwargs["name"] = _dict["name"]
        return ToolMessage(
            content=_dict.get("content", ""),
            tool_call_id=_dict.get("tool_call_id"),
            additional_kwargs=additional_kwargs,
        )
    else:
        return ChatMessage(content=_dict.get("content", ""), role=role)

def _convert_delta_to_message_chunk(
    _dict: Mapping[str, Any], default_class: Type[BaseMessageChunk]
) -> BaseMessageChunk:
    role = _dict.get("role")
    content = _dict.get("content") or ""
    additional_kwargs: Dict = {}
    if _dict.get("tool_calls"):
        additional_kwargs["tool_calls"] = _dict["tool_calls"]

    if role == "user" or default_class == HumanMessageChunk:
        return HumanMessageChunk(content=content)
    elif role == "assistant" or default_class == AIMessageChunk:
        return AIMessageChunk(content=content, additional_kwargs=additional_kwargs)
    elif role == "system" or default_class == SystemMessageChunk:
        return SystemMessageChunk(content=content)
    elif role == "tool" or default_class == ToolMessageChunk:
        return ToolMessageChunk(content=content, tool_call_id=_dict["tool_call_id"])
    elif role or default_class == ChatMessageChunk:
        return ChatMessageChunk(content=content, role=role)
    else:
        return default_class(content=content)

class ChatZhipuAI(BaseChatModel):
    """
    `ZHIPU AI` large language chat models API.

    To use, you should have the ``zhipuai`` python package installed.

    Example:
    .. code-block:: python

    from langchain_community.chat_models import ChatZhipuAI

    zhipuai_chat = ChatZhipuAI(
        temperature=0.5,
        api_key="your-api-key",
        model_name="glm-3-turbo",
    )

    """

    zhipuai: Any
    zhipuai_api_key: Optional[str] = Field(default=None, alias="api_key")
    """Automatically inferred from env var `ZHIPUAI_API_KEY` if not provided."""

    client: Any = Field(default=None, exclude=True)  #: :meta private:

    model_name: str = Field("glm-3-turbo", alias="model")
    """
    Model name to use.
    -glm-3-turbo:
        According to the input of natural language instructions to complete a
        variety of language tasks, it is recommended to use SSE or asynchronous
        call request interface.
    -glm-4:
        According to the input of natural language instructions to complete a
        variety of language tasks, it is recommended to use SSE or asynchronous
        call request interface.
    """

    temperature: float = Field(0.95)
    """
    What sampling temperature to use. The value ranges from 0.0 to 1.0 and cannot
    be equal to 0.
    The larger the value, the more random and creative the output; The smaller
    the value, the more stable or certain the output will be.
    You are advised to adjust top_p or temperature parameters based on application
    scenarios, but do not adjust the two parameters at the same time.
    """

    top_p: float = Field(0.7)
    """
    Another method of sampling temperature is called nuclear sampling. The value
    ranges from 0.0 to 1.0 and cannot be equal to 0 or 1.
    The model considers the results with top_p probability quality tokens.
    For example, 0.1 means that the model decoder only considers tokens from the
    top 10% probability of the candidate set.
    You are advised to adjust top_p or temperature parameters based on application
    scenarios, but do not adjust the two parameters at the same time.
    """

    request_id: Optional[str] = Field(None)
    """
    Parameter transmission by the client must ensure uniqueness; A unique
    identifier used to distinguish each request, which is generated by default
    by the platform when the client does not transmit it.
    """
    do_sample: Optional[bool] = Field(True)
    """
    When do_sample is true, the sampling policy is enabled. When do_sample is false,
    the sampling policy temperature and top_p are disabled
    """
    streaming: bool = Field(False)
    """Whether to stream the results or not."""

    model_kwargs: Dict[str, Any] = Field(default_factory=dict)
    """Holds any model parameters valid for `create` call not explicitly specified."""

    max_tokens: Optional[int] = None
    """Number of chat completions to generate for each prompt."""

    max_retries: int = 2
    """Maximum number of retries to make when generating."""

    @property
    def _identifying_params(self) -> Dict[str, Any]:
        """Get the identifying parameters."""
        return {**{"model_name": self.model_name}, **self._default_params}

    @property
    def _llm_type(self) -> str:
        """Return the type of chat model."""
        return "zhipuai"

    @property
    def lc_secrets(self) -> Dict[str, str]:
        return {"zhipuai_api_key": "ZHIPUAI_API_KEY"}

    @classmethod
    def get_lc_namespace(cls) -> List[str]:
        """Get the namespace of the langchain object."""
        return ["langchain", "chat_models", "zhipuai"]

    @property
    def lc_attributes(self) -> Dict[str, Any]:
        attributes: Dict[str, Any] = {}

        if self.model_name:
            attributes["model"] = self.model_name

        if self.streaming:
            attributes["streaming"] = self.streaming

        if self.max_tokens:
            attributes["max_tokens"] = self.max_tokens

        return attributes

    @property
    def _default_params(self) -> Dict[str, Any]:
        """Get the default parameters for calling ZhipuAI API."""
        params = {
            "model": self.model_name,
            "stream": self.streaming,
            "temperature": self.temperature,
            "top_p": self.top_p,
            "do_sample": self.do_sample,
            **self.model_kwargs,
        }
        if self.max_tokens is not None:
            params["max_tokens"] = self.max_tokens
        return params

    @property
    def _client_params(self) -> Dict[str, Any]:
        """Get the parameters used for the zhipuai client."""
        zhipuai_creds: Dict[str, Any] = {
            "request_id": self.request_id,
        }
        return {**self._default_params, **zhipuai_creds}

    def __init__(self, *args, **kwargs):
        super().__init__(*args, **kwargs)
        try:
            from zhipuai import ZhipuAI

            if not is_zhipu_v2():
                raise RuntimeError(
                    "zhipuai package version is too low"
                    "Please install it via 'pip install --upgrade zhipuai'"
                )

            self.client = ZhipuAI(
                api_key=self.zhipuai_api_key,  # 填写您的 APIKey
            )
        except ImportError:
            raise RuntimeError(
                "Could not import zhipuai package. "
                "Please install it via 'pip install zhipuai'"
            )

    def completions(self, **kwargs) -> Any | None:
        return self.client.chat.completions.create(**kwargs)

    async def async_completions(self, **kwargs) -> Any:
        loop = asyncio.get_running_loop()
        partial_func = partial(self.client.chat.completions.create, **kwargs)
        response = await loop.run_in_executor(
            None,
            partial_func,
        )
        return response

    async def async_completions_result(self, task_id):
        loop = asyncio.get_running_loop()
        response = await loop.run_in_executor(
            None,
            self.client.asyncCompletions.retrieve_completion_result,
            task_id,
        )
        return response

    def _create_chat_result(self, response: Union[dict, BaseModel]) -> ChatResult:
        generations = []
        if not isinstance(response, dict):
            response = response.dict()
        for res in response["choices"]:
            message = convert_dict_to_message(res["message"])
            generation_info = dict(finish_reason=res.get("finish_reason"))
            if "index" in res:
                generation_info["index"] = res["index"]
            gen = ChatGeneration(
                message=message,
                generation_info=generation_info,
            )
            generations.append(gen)
        token_usage = response.get("usage", {})
        llm_output = {
            "token_usage": token_usage,
            "model_name": self.model_name,
            "task_id": response.get("id", ""),
            "created_time": response.get("created", ""),
        }
        return ChatResult(generations=generations, llm_output=llm_output)

    def _create_message_dicts(
        self, messages: List[BaseMessage], stop: Optional[List[str]]
    ) -> Tuple[List[Dict[str, Any]], Dict[str, Any]]:
        params = self._client_params
        if stop is not None:
            if "stop" in params:
                raise ValueError("`stop` found in both the input and default params.")
            params["stop"] = stop
        message_dicts = [convert_message_to_dict(m) for m in messages]
        return message_dicts, params

    def completion_with_retry(
        self, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any
    ) -> Any:
        """Use tenacity to retry the completion call."""

        retry_decorator = _create_retry_decorator(self, run_manager=run_manager)

        @retry_decorator
        def _completion_with_retry(**kwargs: Any) -> Any:
            return self.completions(**kwargs)

        return _completion_with_retry(**kwargs)

    async def acompletion_with_retry(
        self,
        run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
        **kwargs: Any,
    ) -> Any:
        """Use tenacity to retry the async completion call."""

        retry_decorator = _create_retry_decorator(self, run_manager=run_manager)

        @retry_decorator
        async def _completion_with_retry(**kwargs: Any) -> Any:
            return await self.async_completions(**kwargs)

        return await _completion_with_retry(**kwargs)

    def _generate(
        self,
        messages: List[BaseMessage],
        stop: Optional[List[str]] = None,
        run_manager: Optional[CallbackManagerForLLMRun] = None,
        stream: Optional[bool] = None,
        **kwargs: Any,
    ) -> ChatResult:
        """Generate a chat response."""

        should_stream = stream if stream is not None else self.streaming
        if should_stream:
            stream_iter = self._stream(
                messages, stop=stop, run_manager=run_manager, **kwargs
            )
            return generate_from_stream(stream_iter)

        message_dicts, params = self._create_message_dicts(messages, stop)
        params = {
            **params,
            **({"stream": stream} if stream is not None else {}),
            **kwargs,
        }
        response = self.completion_with_retry(
            messages=message_dicts, run_manager=run_manager, **params
        )
        return self._create_chat_result(response)

    async def _agenerate(
        self,
        messages: List[BaseMessage],
        stop: Optional[List[str]] = None,
        run_manager: Optional[CallbackManagerForLLMRun] = None,
        stream: Optional[bool] = False,
        **kwargs: Any,
    ) -> ChatResult:
        """Asynchronously generate a chat response."""
        should_stream = stream if stream is not None else self.streaming
        if should_stream:
            stream_iter = self._astream(
                messages, stop=stop, run_manager=run_manager, **kwargs
            )
            return generate_from_stream(stream_iter)

        message_dicts, params = self._create_message_dicts(messages, stop)
        params = {
            **params,
            **({"stream": stream} if stream is not None else {}),
            **kwargs,
        }
        response = await self.acompletion_with_retry(
            messages=message_dicts, run_manager=run_manager, **params
        )
        return self._create_chat_result(response)

    def _stream(
        self,
        messages: List[BaseMessage],
        stop: Optional[List[str]] = None,
        run_manager: Optional[CallbackManagerForLLMRun] = None,
        **kwargs: Any,
    ) -> Iterator[ChatGenerationChunk]:
        """Stream the chat response in chunks."""
        message_dicts, params = self._create_message_dicts(messages, stop)
        params = {**params, **kwargs, "stream": True}

        default_chunk_class = AIMessageChunk
        for chunk in self.completion_with_retry(
            messages=message_dicts, run_manager=run_manager, **params
        ):
            if not isinstance(chunk, dict):
                chunk = chunk.dict()
            if len(chunk["choices"]) == 0:
                continue
            choice = chunk["choices"][0]
            chunk = _convert_delta_to_message_chunk(
                choice["delta"], default_chunk_class
            )

            finish_reason = choice.get("finish_reason")
            generation_info = (
                dict(finish_reason=finish_reason) if finish_reason is not None else None
            )
            default_chunk_class = chunk.__class__
            chunk = ChatGenerationChunk(message=chunk, generation_info=generation_info)
            yield chunk
            if run_manager:
                run_manager.on_llm_new_token(chunk.text

那么,我们该如何学习大模型?

作为一名热心肠的互联网老兵,我决定把宝贵的AI知识分享给大家。 至于能学习到多少就看你的学习毅力和能力了 。我已将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

一、大模型全套的学习路线

学习大型人工智能模型,如GPT-3、BERT或任何其他先进的神经网络模型,需要系统的方法和持续的努力。既然要系统的学习大模型,那么学习路线是必不可少的,下面的这份路线能帮助你快速梳理知识,形成自己的体系。

L1级别:AI大模型时代的华丽登场

L2级别:AI大模型API应用开发工程

L3级别:大模型应用架构进阶实践

L4级别:大模型微调与私有化部署

一般掌握到第四个级别,市场上大多数岗位都是可以胜任,但要还不是天花板,天花板级别要求更加严格,对于算法和实战是非常苛刻的。建议普通人掌握到L4级别即可。

以上的AI大模型学习路线,不知道为什么发出来就有点糊,高清版可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

二、640套AI大模型报告合集

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。

img

三、大模型经典PDF籍

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。

img

四、AI大模型商业化落地方案

img

作为普通人,入局大模型时代需要持续学习和实践,不断提高自己的技能和认知水平,同时也需要有责任感和伦理意识,为人工智能的健康发展贡献力量。

标签:RAG,智普,return,AI,self,content,dict,kwargs,message
From: https://blog.csdn.net/2401_85328934/article/details/139432146

相关文章

  • 程序员为什么要学习AI大模型?
    前言在科技浪潮的推动下,人工智能(AI)技术已经成为推动软件行业发展的核心动力。而在AI技术的众多分支中,AI大模型以其巨大的潜力和广泛的应用场景,逐渐成为了程序员们关注的焦点。本文将从程序员的角度出发,探讨AI大模型的定义、应用,以及为何程序员需要深入了解大模型的相关知识......
  • 解锁高效PPT制作新时代——AI+PPT的小报童隆重登场!
    在这里插入图片描述解锁高效PPT制作新时代——AI+PPT的小报童隆重登场!在当今快节奏的工作环境中,高效和专业是成功的关键。而PPT作为职场中的重要工具,往往需要我们花费大量时间去制作和优化。有没有一种方法能够让PPT制作变得更加简单和高效呢?答案是肯定的!今天,我向大家介绍......
  • 重塑工作场景:IngDan硬蛋AI工具在AIGC技术中的应用布局
    随着人工智能技术的飞速发展,AI工具已成为推动工作场景创新的关键力量。硬蛋学堂重新定义基于新质生产力的技术人才,为大家提供大模型应用研发工程师/大模型应用架构工程师从课程体系+实训平台+技能认证+企业用人的全方位服务!同时也可以为公司架设本地大模型工具实现基于本地化......
  • AI绘画中的色彩空间转换技术
    在数字艺术的广阔天地中,AI绘画作为一种新兴的创作方式,正以其独特的魅力吸引着越来越多的关注。它不仅仅是一种技术,更是一种全新的艺术表现形式。而在AI绘画的背后,色彩空间转换技术起着至关重要的作用。今天,我们就来深入探讨一下这个神奇的技术。首先,我们需要了解什么是色彩......
  • 镜头效果技术在AI绘画中的革新作用
    随着人工智能技术的飞速发展,AI绘画已经成为艺术与科技交汇的前沿领域。在这一领域中,镜头效果技术的应用不仅为艺术家和设计师们提供了全新的创作工具,更在艺术创作中扮演了革命性的角色。本文将深入探讨镜头效果技术在AI绘画中的应用,以及它如何改变我们对艺术创作的认识和实......
  • 使用AppJail配置网络并创建tiny jail(未成功)
    创建tinyjail成功了,但是网络配置这块,jail里只能ping通外面,而无法pkg更新软件。本文章是这篇文章Jail管理器AppJail的使用@FreeBSD-CSDN博客的网络篇。首先host主机配置pf防火墙参考这里:PacketFilter-AppJailHandbook 在/etc/rc.conf文件中添加pf_enable="YES"pflog_......
  • Jail管理器AppJail的使用@FreeBSD
    Jail的简介Jail是FreeBSD操作系统中一个功能强大的安全机制,自FreeBSD4.X版本起便投入使用,并且随着系统的发展,其功能、效率、稳定性和安全性得到了持续的强化。Jail基于chroot的概念,通过更改一系列程序的根目录,为程序提供了一个隔离的安全环境,将其与系统的其他部分完全分隔......
  • WPF grid column resize via GridSpitter, when you can drag to enlarge or shrink t
    <Windowx:Class="WpfApp137.MainWindow"xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"xmlns:d="http://schemas.microsoft......
  • AI框架之Spring AI与Spring Cloud Alibaba AI使用讲解
    目录1AI框架1.1SpringAI简介1.2SpringAI使用1.2.1pom.xml1.2.2可实现的功能1.3SpringCloudAlibabaAI1.4SpringCloudAlibabaAI实践操作1.4.1pom.xml1.4.2配置文件1.4.3对接文本模型1.4.4文生图模型1.4.5语音合成模型1AI框架1.1SpringAI简介在软件开......
  • 个人向 godot 源码阅读 - 3 - MainLoop 以及 2D 视口
    3-MainLoop以及2D视口godot默认的主循环类型为SceneTree,在之上则承载了godot中的重要概念之一节点树.SceneTree的源文件位于scene/main/scene_tree.cpp,SceneTree默认将会在Main::start()函数中被创建,然后被设置到OS的mainloop上,现在让我们来看看Scen......