首页 > 其他分享 >从当当网批量获取图书信息

从当当网批量获取图书信息

时间:2024-06-04 23:58:50浏览次数:27  
标签:xpath join 批量 text 当当网 selector book id 图书

爬取当当网图书数据并保存到本地,使用request、lxml的etree模块、csv模块保存数据到本地。

爬取网页的url为:

http://search.dangdang.com/?key={}&act=input&page_index={}

其中{}为搜索关键字,page_index为页码。

爬取的数据包括:书名、作者、出版社、图书简介、出版日期、价格、评分、评价人数。

  

代码如下:

import random
import requests
from lxml import etree
import pandas as pd
import time

data = []
data.append(['书名', '作者', '图书简介', '出版社', '出版日期', '评论数量', '价格', '编辑推荐', '作者简介', '排名'])
def get_book_info(url):
    headers = {
        'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/58.0.3029.110 Safari/537.36'
    }
    response = requests.get(url, headers=headers)
    response.encoding = 'utf-8'
    if response.status_code == 200:
        selector = etree.HTML(response.text)
        book_list = selector.xpath('//ul[@id="component_59"]/li')
        for book in book_list:            
            book_detail_url = book.xpath('.//a/@href')[0]
            get_book_detail('http:' + book_detail_url)
            time.sleep(random.randint(1, 5))

def get_book_detail(url):
    headers = {
        'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/58.0.3029.110 Safari/537.36'
    }
    response = requests.get(url, headers=headers)
    response.encoding = 'utf-8'
    if response.status_code == 200:
        selector = etree.HTML(response.text)
        # 书名   
        book_name = selector.xpath('//*[@id="product_info"]/div[1]/h1/text()')
        if len(book_name) == 0:
            book_name = '无' 
        else:
            book_name = ','.join(book_name)
        # 作者
        book_author = selector.xpath('//*[@id="author"]/a//text()')
        if len(book_author) == 0:
            book_author = '无' 
        else:
            book_author = ','.join(book_author)
        # 简介
        book_intro = selector.xpath('//*[@id="product_info"]/div[1]/h2/span[1]/text()')
        if len(book_intro) == 0:
            book_intro = '无'
        else:
            book_intro = ','.join(book_intro)          
        # 出版社
        book_publisher = selector.xpath('//*[@id="product_info"]/div[2]/span[2]/a//text()')
        if len(book_publisher) == 0:
            book_publisher = '无'
        else:
            book_publisher = ','.join(book_publisher)
        # 出版日期
        book_date = selector.xpath('//*[@id="product_info"]/div[2]/span[3]/text()')
        if len(book_date) == 0:
            book_date = '无'
        else:
            book_date = ','.join(book_date)
        # 评论数量
        book_comments = selector.xpath('//*[@id="comm_num_down"]/text()')
        if len(book_comments) == 0:
            book_comments = '无'
        else:
            book_comments = ','.join(book_comments)
        # 价格      
        book_price = selector.xpath('//*[@id="dd-price"]/text()')       
        if len(book_price) == 0:
            book_price = '无'
        else:
            book_price = ','.join(book_price) 
        # 编辑推荐
        book_recommend = selector.xpath('//*[@id="abstract"]/div[2]/p/text()')
        if len(book_recommend) == 0:
            book_recommend = '无'
        else:
            book_recommend = ','.join(book_recommend)
        # 作者简介
        author_intro = ''.join(selector.xpath('//*[@id="authorIntroduction"]/div[2]//text()'))
        # 排名
        book_rank = ''.join(selector.xpath('//*[@id="product_info"]/div[2]/div/span[1]//text()'))        
        data.append([book_name, book_author, book_publisher, book_intro, book_date, book_price, book_comments, book_recommend, author_intro, book_rank])

if __name__ == '__main__':    
    keyword = input('请输入搜索关键字:')
    page_index = 1
    while True:
        url = f'http://search.dangdang.com/?key={keyword}&act=input&page_index={page_index}'
        get_book_info(url)
        page_index += 1
        if page_index > 5:
            break
    df = pd.DataFrame(data[1:], columns=data[0])
    # 将DataFrame保存为Excel文件
    df.to_excel('output.xlsx', index=False)

标签:xpath,join,批量,text,当当网,selector,book,id,图书
From: https://blog.csdn.net/svygh123/article/details/139456709

相关文章