70. 爬楼梯 (进阶)
57. 爬楼梯(第八期模拟笔试)
其实是一个完全背包问题。
1阶,2阶,.... m阶就是物品,楼顶就是背包。
动规五部曲
1.确定dp数组以及下标的含义
dp[i]:爬到有i个台阶的楼顶,有dp[i]种方法。
2.确定递推公式
求装满背包有几种方法,递推公式一般都是dp[i] += dp[i - nums[j]];
本题呢,dp[i]有几种来源,dp[i - 1],dp[i - 2],dp[i - 3] 等等,即:dp[i - j]
那么递推公式为:dp[i] += dp[i - j]
3.dp数组如何初始化
既然递归公式是 dp[i] += dp[i - j],那么dp[0] 一定为1,dp[0]是递归中一切数值的基础所在,如果dp[0]是0的话,其他数值都是0了。
下标非0的dp[i]初始化为0,因为dp[i]是靠dp[i-j]累计上来的,dp[i]本身为0这样才不会影响结果
4.确定遍历顺序
这是背包里求排列问题,即:1、2 步 和 2、1 步都是上三个台阶,但是这两种方法不一样!
所以需将target放在外循环,将nums放在内循环。
每一步可以走多次,这是完全背包,内循环需要从前向后遍历。
5.举例来推导dp数组
代码
import java.util.Scanner;
public class Main{
public static void main(String [] args){
Scanner sc = new Scanner(System.in);
int m, n;
while (sc.hasNextInt()) {
// 从键盘输入参数,中间用空格隔开
n = sc.nextInt();
m = sc.nextInt();
// 求排列问题,先遍历背包再遍历物品
int[] dp = new int[n + 1];
dp[0] = 1;
for (int j = 1; j <= n; j++) {
for (int i = 1; i <= m; i++) { //由题意爬楼梯最少都会爬一节
if (j - i >= 0) dp[j] += dp[j - i];
}
}
System.out.println(dp[n]);
}
}
}
322. 零钱兑换
题目中说每种硬币的数量是无限的,可以看出是典型的完全背包问题
动规五部曲
1.确定dp数组以及下标的含义
dp[j]:凑足总额为j所需钱币的最少个数为dp[j]
2.确定递推公式
凑足总额为j - coins[i]的最少个数为dp[j - coins[i]],那么只需要加上一个钱币coins[i]即dp[j - coins[i]] + 1就是dp[j](考虑coins[i])
所以dp[j] 要取所有 dp[j - coins[i]] + 1 中最小的。
递推公式:dp[j] = min(dp[j - coins[i]] + 1, dp[j]);
3.dp数组如何初始化
首先凑足总金额为0所需钱币的个数一定是0,那么dp[0] = 0;
其他下标对应的数值呢?
考虑到递推公式的特性,dp[j]必须初始化为一个最大的数,否则就会在min(dp[j - coins[i]] + 1, dp[j])比较的过程中被初始值覆盖。
所以下标非0的元素都是应该是最大值。
4.确定遍历顺序
本题求钱币最小个数,那么钱币有顺序和没有顺序都可以,都不影响钱币的最小个数。
所以本题并不强调集合是组合还是排列。
如果求组合数就是外层for循环遍历物品,内层for遍历背包。
如果求排列数就是外层for遍历背包,内层for循环遍历物品。
本题钱币数量可以无限使用,那么是完全背包。所以遍历的内循环是正序
5.举例推导dp数组
代码
class Solution {
public int coinChange(int[] coins, int amount) {
int max = Integer.MAX_VALUE;
int [] dp =new int[amount+1];
Arrays.fill(dp,max);
dp[0] = 0; //金额为0时候所需的硬币数为0
for (int i = 0; i < coins.length; i++) {
for (int j = coins[i]; j <= amount; j++) { //正序遍历 完全背包
if (dp[j - coins[i]] != max) { //小剪枝
//选择硬币数目最小的情况
dp[j] = Math.min(dp[j], dp[j - coins[i]] + 1);
}
}
}
return dp[amount] == max ? -1 : dp[amount];
}
}
279.完全平方数
本题目不会出现凑不成的情况,因为完全平方数中有1。
完全平方数就是物品(可以无限件使用),凑个正整数n就是背包,问凑满这个背包最少有多少物品
动规五部曲
1.确定dp数组(dp table)以及下标的含义
dp[j]:和为j的完全平方数的最少数量为dp[j]
2.确定递推公式
dp[j] 可以由dp[j - i * i]推出, dp[j - i * i] + 1 便可以凑成dp[j]。
此时我们要选择最小的dp[j],所以递推公式:dp[j] = min(dp[j - i * i] + 1, dp[j]);
3.dp数组如何初始化
dp[0]表示 和为0的完全平方数的最小数量,那么dp[0]一定是0。
问题,那0 * 0 也算是一种啊,为啥dp[0] 就是 0呢?
看题目描述,找到若干个完全平方数(比如 1, 4, 9, 16, ...),题目描述中可没说要从0开始,dp[0]=0完全是为了递推公式。
非0下标的dp[j]应该是多少呢?
从递归公式dp[j] = min(dp[j - i * i] + 1, dp[j]);中可以看出每次dp[j]都要选最小的,所以非0下标的dp[j]一定要初始为最大值,这样dp[j]在递推的时候才不会被初始值覆盖。
4.确定遍历顺序
我们知道这是完全背包,
如果求组合数就是外层for循环遍历物品,内层for遍历背包。
如果求排列数就是外层for遍历背包,内层for循环遍历物品。
5.举例推导dp数组
代码
class Solution {
public int numSquares(int n) {
int max = Integer.MAX_VALUE;
int[] dp = new int[n + 1];
Arrays.fill(dp, max);
dp[0] = 0; //题目描述没有0
for (int i = 1; i * i <= n; i++) { //相当于对完全平方数进行遍历 从1开始要取n
for (int j = i * i; j <= n; j++) {
dp[j] = Math.min(dp[j], dp[j - i * i] + 1);
}
}
return dp[n];
}
}
class Solution {
// 版本二, 先遍历背包, 再遍历物品
public int numSquares(int n) {
int max = Integer.MAX_VALUE;
int[] dp = new int[n + 1];
// 初始化
for (int j = 0; j <= n; j++) {
dp[j] = max;
}
// 当和为0时,组合的个数为0
dp[0] = 0;
// 遍历背包
for (int j = 1; j <= n; j++) {
// 遍历物品
for (int i = 1; i * i <= j; i++) { //通过j对i*i做约束
dp[j] = Math.min(dp[j], dp[j - i * i] + 1);
}
}
return dp[n];
}
}
标签:遍历,进阶,int,coins,322,背包,day48,递推,dp
From: https://blog.csdn.net/m0_68259754/article/details/139409396