首页 > 其他分享 >传统RNN网络及其案例--人名分类

传统RNN网络及其案例--人名分类

时间:2024-05-22 20:51:36浏览次数:29  
标签:人名 RNN -- self tensor output hidden line size

传统RNN网络及其案例--人名分类

传统的RNN模型简介

RNN

先上图

这图看起来莫名其妙,想拿着跟CNN对比着学第一眼看上去有点摸不着头脑,其实我们可以把每一个时刻的图展开来,如下

其中,为了简化计算,我们默认每一个隐层参数相同,这样看来RNN的结构就比较简单了,相比较CNN来说,RNN引入了更多的时序信息。

LSTM

在训练 RNN 时,每个时间步的输出都依赖于之前时间步的状态,这种依赖关系形成了一个链式结构。当反向传播时,梯度需要通过多个时间步传播回去,由于链式法则的存在,这个过程中梯度会多次进行乘法运算。如果这些乘法运算的结果小于1,梯度就会随着时间步的增加逐渐衰减,最终可能消失到几乎为零,就会导致梯度消失。RNN 中常用的激活函数如 Sigmoid 或者 tanh 函数,它们的输出范围都在 (0, 1) 或者 (-1, 1) 之间。在反向传播时,如果梯度在这些函数的导数范围内,则可以稳定地传播;但如果超出了这个范围,梯度可能会指数级增长或减少,导致梯度爆炸。而且这些在处理长序列时特别容易发生,因此,出现了RNN的改良版,LSTM。

先看图:

谈到LSTM就无法避免的提及它的三个门和最上面的记忆单元

  1. 记忆单元:记忆单元是LSTM的核心,用于存储信息。它可以看作是一条信息通道,贯穿整个 LSTM单元链条,允许信息直接传递,减少信息丢失。

  2. 遗忘门:遗忘门决定哪些信息需要从记忆单元中删除。它通过sigmoid函数(将当前输入和前一时刻的隐藏状态作为输入)输出一个0到1之间的值。接近0的值表示需要遗忘的信息,接近1的值表示需要保留的信息。

    \[f_t = \sigma(W_f \cdot [h_{t-1}, x_t] + b_f) \]

  3. 输入门: 输入门决定哪些新的信息需要添加到记忆单元中。它由两个部分组成:一个sigmoid层决定哪些值将被更新;一个tanh层生成新的候选值向量。

    \[i_t = \sigma(W_i \cdot [h_{t-1}, x_t] + b_i) \]

    \[\tilde{C}_t = \tanh(W_C \cdot [h_{t-1}, x_t] + b_C) $$​ \]

    \[o_t = \sigma(W_o \cdot [h_{t-1}, x_t] + b_o) \]

    \[h_t = o_t * \tanh(C_t)$$​ \]

  4. 遗忘阶段:计算遗忘门的值,以确定当前记忆单元状态中需要遗忘的部分。

    \[C_t = f_t * C_{t-1} \]

  5. 输入阶段:计算输入门的值,并生成新的候选记忆内容。

    \[C_t = C_t + i_t * \tilde{C}_t \]

  6. 更新记忆单元:结合遗忘门和输入门的输出,更新当前记忆单元的状态。

  7. 输出阶段:计算输出门的值,并生成新的隐藏状态。
    完整公式流程

\[f_t = \sigma(W_f \cdot [h_{t-1}, x_t] + b_f) \]

\[i_t = \sigma(W_i \cdot [h_{t-1}, x_t] + b_i) \]

\[\tilde{C}_t = \tanh(W_C \cdot [h_{t-1}, x_t] + b_C) \]

\[C_t = f_t * C_{t-1} + i_t * \tilde{C}_t \]

\[o_t = \sigma(W_o \cdot [h_{t-1}, x_t] + b_o) \]

\[h_t = o_t * \tanh(C_t) \]

GRU

LSTM固然很强,解决了RNN对于长序列模型表现很拉跨的难题,但是仔细查看LSTM的过程就会发现,相对于RNN来说他引入了太多的参数,很容易就过拟合和训练时间大大加长,因此,GRU改进这一问题

  1. 更新门:更新门控制着前一时间步的信息和当前时间步的新信息之间的混合。它通过sigmoid函数决定有多少过去的信息需要保留,以及有多少新的信息需要添加。

    \[z_t = \sigma(W_z \cdot [h_{t-1}, x_t] + b_z) \]

  2. 重置门:重置门控制着前一时间步的隐藏状态在当前时间步中被遗忘的比例。它通过sigmoid函数决定有多少前一时间步的信息需要被重置。

    \[r_t = \sigma(W_r \cdot [h_{t-1}, x_t] + b_r) \]

  3. 候选隐藏状态:候选隐藏状态结合了重置门的结果,决定当前时间步的隐藏状态。

    \[\tilde{h}_t = \tanh(W \cdot [r_t * h_{t-1}, x_t] + b) \]

  4. 隐藏状态:最终的隐藏状态是更新门和候选隐藏状态的组合。

    \[h_t = (1 - z_t) * h_{t-1} + z_t * \tilde{h}_t \]

工作流程如下:

  1. 重置阶段:计算重置门的值,以确定前一时间步的信息在当前时间步中被重置的比例。

    \[r_t = \sigma(W_r \cdot [h_{t-1}, x_t] + b_r) \]

  2. 更新阶段:计算更新门的值,以确定有多少信息从前一时间步保留到当前时间步。

    \[z_t = \sigma(W_z \cdot [h_{t-1}, x_t] + b_z) \]

  3. 候选隐藏状态阶段:计算候选隐藏状态,该状态结合了重置门的结果和当前输入信息。

    \[\tilde{h}_t = \tanh(W \cdot [r_t * h_{t-1}, x_t] + b) \]

  4. 隐藏状态更新阶段:结合更新门和候选隐藏状态,更新当前时间步的隐藏状态。

    \[h_t = (1 - z_t) * h_{t-1} + z_t * \tilde{h}_t \]

    完整工作流程

    \[z_t = \sigma(W_z \cdot [h_{t-1}, x_t] + b_z) \]

    \[r_t = \sigma(W_r \cdot [h_{t-1}, x_t] + b_r) \]

    \[\tilde{h}_t = \tanh(W \cdot [r_t * h_{t-1}, x_t] + b) \]

    \[ h_t = (1 - z_t) * h_{t-1} + z_t * \tilde{h}_t $$​ \]

1. 准备工作

  1. 要用到的数据集点此下载,备用地址,点击下载

  2. 导入一些包和写一个读取数据的函数(这段代码不是重点,直接抄就行了,只需要记住几个关键的变量)

    category_lines: 人名类别与具体人名对应关系的字典,形式为{人名类别:[人名1,人名2,...]}
    all_categories:所有的类别构成的列表
    all_letters:所有的字符
    
    import torch
    from io import open
    import glob
    import os
    import unicodedata
    import string
    import random
    import time
    import math
    import torch.nn as nn
    import matplotlib.pyplot as plt
    
    data_path = './data/names/'
    all_letters = string.ascii_letters + " .,;'"
    def unicodeToAscii(text):
        """
        Converts a Unicode string to an ASCII string.
    
        Args:
            text (str): The Unicode string to convert.
    
        Returns:
            str: The ASCII string.
        """
        return ''.join([
            unicodedata.normalize('NFKD', char)
            for char in text
            if not unicodedata.combining(char)
        ]).encode('ascii', 'ignore').decode('ascii')
    
    
    def readLines(filename):
        lines = open(filename, encoding='utf-8').read().strip().split('\n')
        return [unicodeToAscii(line) for line in lines]
    
    # 构建一个人名类别与具体人名对应关系的字典
    category_lines = {}
    
    # 构建所有类别的列表
    all_categories = []
    
    # 遍历所有的文件,使用glob.glob中可以利用正则表达式遍历
    for filename in glob.glob(data_path + '*.txt'):
        category = os.path.splitext(os.path.basename(filename))[0]
        all_categories.append(category)
        lines = readLines(filename)
        # 将类别与人名对应关系存储到字典中
        category_lines[category] = lines
    
    # 测试
    print(category_lines['Italian'][:5])
    
  3. 字符无法直接被网络识别,因此要将其编码,这里使用最简单的one-hot编码,实现一个函数lineToTensor(line),将输入的名字编码成张量

    def lineToTensor(line):
        # 首先初始化一个全0的张量,大小为len(line) * 1 * n_letters
        # 代表人名每个字母都用一个(1 * n_letters)的one-hot向量表示
        tensor = torch.zeros(len(line), 1, len(all_letters))
        # 遍历人名的每个字母, 并搜索其在所有字母中的位置,将其对应的位置置为1
        for li, letter in enumerate(line):
            tensor[li][0][all_letters.find(letter)] = 1
            
        return tensor
    # 测试
    line = "Bai"
    tensor = lineToTensor(line)
    print("line_tensor:", tensor)
    print("line_tensor_size:", tensor.size())
    

2. 模型搭建

  1. 搭建RNN模型

    class RNN(nn.Module):
        def __init__(self, input_size, hidden_size, output_size, num_layers=1):
            super(RNN, self).__init__()
            # input_size: 输入数据的特征维度
            # hidden_size: RNN隐藏层的最后一个维度
            # output_size: RNN网络最后线性层的输出维度
            # num_layers: RNN网络的层数
            self.input_size = input_size
            self.hidden_size = hidden_size
            self.output_size = output_size
            self.num_layers = num_layers
            self.rnn = nn.RNN(input_size, hidden_size, num_layers)
            self.linear = nn.Linear(hidden_size, output_size)
            self.softmax = nn.LogSoftmax(dim=-1)
            
        def forward(self, input1, hidden):
            # input: 人名分类器中的输入张量,形状是1*n_letters
            # hidden: 代表隐藏层张量,形状是self.num_layers*1*hidden_size
            # 输入到RNN中的张量要求是三维张量,所以需要用unsqueeze()函数扩充维度
            input1 = input1.unsqueeze(0)
            rr, hn = self.rnn(input1, hidden)
            # 将RNN中获得的结果通过线性层变换和softmax函数输出
            return self.softmax(self.linear(rr)), hn
        
        def initHidden(self):
            # 初始化隐藏层张量,全0张量,维度是3
            return torch.zeros(self.num_layers, 1, self.hidden_size)
    
  2. 搭建LSTM模型

    class LSTM(nn.Module):
        def __init__(self, input_size, hidden_size, output_size, num_layers=1):
            super(LSTM, self).__init__()
            self.input_size = input_size
            self.hidden_size = hidden_size
            self.output_size = output_size
            self.num_layers = num_layers
            self.lstm = nn.LSTM(input_size, hidden_size, num_layers)
            self.linear = nn.Linear(hidden_size, output_size)
            self.softmax = nn.LogSoftmax(dim=-1)
            
        def forward(self, input1, hidden, c):
            # 注意:LSTM网络的输入有三个张量,不能忘记细胞状态C
            input1 = input1.unsqueeze(0)
            rr, (hn, cn) = self.lstm(input1, (hidden, c))
            return self.softmax(self.linear(rr)), hn, cn
        
        def initHiddenAndC(self):
            c = hidden = torch.zeros(self.num_layers, 1, self.hidden_size)
            return hidden, c
    
  3. 搭建GRU模型

    class GRU(nn.Module):
        def __init__(self, input_size, hidden_size, output_size, num_layers=1):
            super(GRU, self).__init__()
            self.input_size = input_size
            self.hidden_size = hidden_size
            self.output_size = output_size
            self.num_layers = num_layers
            self.gru = nn.GRU(input_size, hidden_size, num_layers)
            self.linear = nn.Linear(hidden_size, output_size)
            self.softmax = nn.LogSoftmax(dim=-1)
            
        def forward(self, input1, hidden):
            input1 = input1.unsqueeze(0)
            rr, hn = self.gru(input1, hidden)
            return self.softmax(self.linear(rr)), hn
        
        def initHidden(self):
            return torch.zeros(self.num_layers, 1, self.hidden_size)
    

3. 模型的实例化与训练

  1. 定义一些参数以及实例化模型

    # 参数
    input_size = len(all_letters)
    n_hidden = 128
    output_size = n_categories
    input1 = lineToTensor('B').squeeze(0)
    hidden = c = torch.zeros(1, 1, n_hidden)
    
    rnn = RNN(input_size, n_hidden, output_size)
    lstm = LSTM(input_size, n_hidden, output_size)
    gru = GRU(input_size, n_hidden, output_size)
    
    # 测试
    rnn_output, rnn_hidden = rnn(input1, hidden)
    lstm_output, lstm_hidden, next_c = lstm(input1, hidden, c)
    gru_output, gru_hidden = gru(input1, hidden)
    
    # 打印输出信息
    print("rnn_output:", rnn_output)
    print("rnn_shape:", rnn_output.shape)
    print("********************************")
    print("lstm_output:", lstm_output)
    print("lstm_shape:", lstm_output.shape)
    print("********************************")
    print("gru_output:", gru_output)
    print("gru_shape:", gru_output.shape)
    
  2. categoryFromOutput(output)函数功能为从模型输出中获取最大值和最大值的索引

    def categoryFromOutput(output):
        # 从输出中获取最大值和最大值的索引
        top_n, top_i = output.topk(1)
        category_i = top_i[0].item()
        return all_categories[category_i], category_i
    
  3. randomTrainingExample()函数功能为随机选训练所需的数据

    def randomTrainingExample():
        # 随机选择一个类别
        category = random.choice(all_categories)
        # 从该类别中随机选择一个人名
        line = random.choice(category_lines[category])
        # 将人名转换为张量
        category_tensor = torch.tensor([all_categories.index(category)], dtype=torch.long)
        line_tensor = lineToTensor(line)
        return category, line, category_tensor, line_tensor
    
  4. 构建训练函数

    # 构建传统RNN训练函数
    criterion = nn.NLLLoss()
    learning_rate = 0.005
    def trainRNN(category_tensor, line_tensor):
        hidden = rnn.initHidden()
        rnn.zero_grad()
        output = None
        for i in range(line_tensor.size()[0]):
            output, hidden = rnn(line_tensor[i], hidden)
        
        # rnn对象由nn.RNN实例化得到,最终输出得到的是三维张量,为了满足category_tensor的维度要求,需要将其转换为二维张量
        loss = criterion(output.squeeze(0), category_tensor)
        loss.backward()
        # 更新参数
        for p in rnn.parameters():
            p.data.add_(-learning_rate, p.grad.data)
        return output, loss.item()
    
    def trainLSTM(category_tensor, line_tensor):
        hidden, c = lstm.initHiddenAndC()
        lstm.zero_grad()
        output = None
        for i in range(line_tensor.size()[0]):
            output, hidden, c = lstm(line_tensor[i], hidden, c)
        
        loss = criterion(output.squeeze(0), category_tensor)
        loss.backward()
        for p in lstm.parameters():
            p.data.add_(-learning_rate, p.grad.data)
        return output, loss.item()
    
    def trainGRU(category_tensor, line_tensor):
        hidden = gru.initHidden()
        gru.zero_grad()
        output = None
        for i in range(line_tensor.size()[0]):
            output, hidden = gru(line_tensor[i], hidden)
        
        loss = criterion(output.squeeze(0), category_tensor)
        loss.backward()
        for p in gru.parameters():
            p.data.add_(-learning_rate, p.grad.data)
        return output, loss.item()
    
  5. 绘图的辅助函数timeSince(since)用于记录代码运行时间

    # 构建时间计算函数
    def timeSince(since):
        now = time.time()
        s = now - since
        m = math.floor(s / 60)
        s -= m * 60
        return "%dm %ds" % (m, s)
    
  6. 构建完整的训练函数

    # 训练轮次
    n_iters = 1000
    # 每隔print_every打印一次信息
    print_every = 50
    # 每个plot_every作为一次绘图采样点
    plot_every = 10
    def train(train_type_fn):
        # 每个制图间隔损失保存列表
        all_losses = []
        # 获得开始的时间戳
        start = time.time()
        current_loss = 0
        for iter in range(1, n_iters + 1):
            category, line, category_tensor, line_tensor = randomTrainingExample()
            output, loss = train_type_fn(category_tensor, line_tensor)
            current_loss += loss
            if iter % print_every == 0:
                guess, guess_i = categoryFromOutput(output)
                correct = "✓" if guess == category else "✗ (%s)" % category
                print("%d %d%% (%s) %.4f %s / %s %s" % (iter, iter / n_iters * 100, timeSince(start), loss, line, guess, correct))
            if iter % plot_every == 0:
                all_losses.append(current_loss / plot_every)
                current_loss = 0
        return all_losses, int(time.time() - start)
    
  7. 训练并绘图

    # 训练并制作对比图
    all_losses1, period1 = train(trainRNN)
    all_losses2, period2 = train(trainLSTM)
    all_losses3, period3 = train(trainGRU)
    
    plt.figure(0)
    plt.plot(all_losses1, label='RNN')
    plt.plot(all_losses2, color='red', label='LSTM')
    plt.plot(all_losses3, color='green', label='GRU')
    plt.legend(loc='upper left')
    
    plt.figure(1)
    x_data = ['RNN', 'LSTM', 'GRU']
    y_data = [period1, period2, period3]
    plt.bar(range(len(x_data)), y_data, color='green', tick_label=x_data)
    
  8. 为方便测试,训练轮次只设置了一千,图形跑出来看不是很清楚,以下为训练1e5次的效果

4. 构建评估函数和预测函数

  1. 评估函数

    def evaluateRNN(line_tensor):
        output = None
        hidden = rnn.initHidden()
        for i in range(line_tensor.size()[0]):
            output, hidden = rnn(line_tensor[i], hidden)
        return output.squeeze(0)
    
    def evaluateLSTM(line_tensor):
        output = None
        hidden, c = lstm.initHiddenAndC()
        for i in range(line_tensor.size()[0]):
            output, hidden, c = lstm(line_tensor[i], hidden, c)
        return output.squeeze(0)
    
    def evaluateGRU(line_tensor):
        output = None
        hidden = gru.initHidden()
        for i in range(line_tensor.size()[0]):
            output, hidden = gru(line_tensor[i], hidden)
        return output.squeeze(0)
    
  2. 预测函数

    def predict(input_line, evaluate, n_predictions=3):
        print("\n> %s" % input_line)
        with torch.no_grad():
            output = evaluate(lineToTensor(input_line))
            topv, topi = output.topk(n_predictions, 1, True)
            predictions = []
            for i in range(n_predictions):
                value = topv[0][i].item()
                category_index = topi[0][i].item()
                print("(%.2f) %s" % (value, all_categories[category_index]))
                predictions.append([value, all_categories[category_index]])
                
    # 测试
    for evaluate_fn in [evaluateRNN, evaluateLSTM, evaluateGRU]:
        predict('Dovesky', evaluate_fn)
        predict('Jackson', evaluate_fn)
        predict('Satoshi', evaluate_fn)
        
    
  3. 完整代码版(方便复制来测试)

    import torch
    from io import open
    import glob
    import os
    import unicodedata
    import string
    import random
    import time
    import math
    import torch.nn as nn
    import matplotlib.pyplot as plt
    data_path = './data/names/'
    
    
    all_letters = string.ascii_letters + " .,;'"
    def unicodeToAscii(text):
        """
        Converts a Unicode string to an ASCII string.
    
        Args:
            text (str): The Unicode string to convert.
    
        Returns:
            str: The ASCII string.
        """
        return ''.join([
            unicodedata.normalize('NFKD', char)
            for char in text
            if not unicodedata.combining(char)
        ]).encode('ascii', 'ignore').decode('ascii')
    
    
    def readLines(filename):
        lines = open(filename, encoding='utf-8').read().strip().split('\n')
        return [unicodeToAscii(line) for line in lines]
    
    # 构建一个人名类别与具体人名对应关系的字典
    category_lines = {}
    
    # 构建所有类别的列表
    all_categories = []
    
    # 遍历所有的文件,使用glob.glob中可以利用正则表达式遍历
    for filename in glob.glob(data_path + '*.txt'):
        category = os.path.splitext(os.path.basename(filename))[0]
        all_categories.append(category)
        lines = readLines(filename)
        # 将类别与人名对应关系存储到字典中
        category_lines[category] = lines
        
    n_categories = len(all_categories)
    
    
    def lineToTensor(line):
        # 首先初始化一个全0的张量,大小为len(line) * 1 * n_letters
        # 代表人名每个字母都用一个(1 * n_letters)的one-hot向量表示
        tensor = torch.zeros(len(line), 1, len(all_letters))
        # 遍历人名的每个字母, 并搜索其在所有字母中的位置,将其对应的位置置为1
        for li, letter in enumerate(line):
            tensor[li][0][all_letters.find(letter)] = 1
            
        return tensor
    
    class RNN(nn.Module):
        def __init__(self, input_size, hidden_size, output_size, num_layers=1):
            super(RNN, self).__init__()
            # input_size: 输入数据的特征维度
            # hidden_size: RNN隐藏层的最后一个维度
            # output_size: RNN网络最后线性层的输出维度
            # num_layers: RNN网络的层数
            self.input_size = input_size
            self.hidden_size = hidden_size
            self.output_size = output_size
            self.num_layers = num_layers
            self.rnn = nn.RNN(input_size, hidden_size, num_layers)
            self.linear = nn.Linear(hidden_size, output_size)
            self.softmax = nn.LogSoftmax(dim=-1)
            
        def forward(self, input1, hidden):
            # input: 人名分类器中的输入张量,形状是1*n_letters
            # hidden: 代表隐藏层张量,形状是self.num_layers*1*hidden_size
            # 输入到RNN中的张量要求是三维张量,所以需要用unsqueeze()函数扩充维度
            input1 = input1.unsqueeze(0)
            rr, hn = self.rnn(input1, hidden)
            # 将RNN中获得的结果通过线性层变换和softmax函数输出
            return self.softmax(self.linear(rr)), hn
        
        def initHidden(self):
            # 初始化隐藏层张量,全0张量,维度是3
            return torch.zeros(self.num_layers, 1, self.hidden_size)
        
        
    class LSTM(nn.Module):
        def __init__(self, input_size, hidden_size, output_size, num_layers=1):
            super(LSTM, self).__init__()
            self.input_size = input_size
            self.hidden_size = hidden_size
            self.output_size = output_size
            self.num_layers = num_layers
            self.lstm = nn.LSTM(input_size, hidden_size, num_layers)
            self.linear = nn.Linear(hidden_size, output_size)
            self.softmax = nn.LogSoftmax(dim=-1)
            
        def forward(self, input1, hidden, c):
            # 注意:LSTM网络的输入有三个张量,不能忘记细胞状态C
            input1 = input1.unsqueeze(0)
            rr, (hn, cn) = self.lstm(input1, (hidden, c))
            return self.softmax(self.linear(rr)), hn, cn
        
        def initHiddenAndC(self):
            c = hidden = torch.zeros(self.num_layers, 1, self.hidden_size)
            return hidden, c
        
    class GRU(nn.Module):
        def __init__(self, input_size, hidden_size, output_size, num_layers=1):
            super(GRU, self).__init__()
            self.input_size = input_size
            self.hidden_size = hidden_size
            self.output_size = output_size
            self.num_layers = num_layers
            self.gru = nn.GRU(input_size, hidden_size, num_layers)
            self.linear = nn.Linear(hidden_size, output_size)
            self.softmax = nn.LogSoftmax(dim=-1)
            
        def forward(self, input1, hidden):
            input1 = input1.unsqueeze(0)
            rr, hn = self.gru(input1, hidden)
            return self.softmax(self.linear(rr)), hn
        
        def initHidden(self):
            return torch.zeros(self.num_layers, 1, self.hidden_size)
        
    # 参数
    input_size = len(all_letters)
    n_hidden = 128
    output_size = n_categories
    hidden = c = torch.zeros(1, 1, n_hidden)
    
    rnn = RNN(input_size, n_hidden, output_size)
    lstm = LSTM(input_size, n_hidden, output_size)
    gru = GRU(input_size, n_hidden, output_size)
    
    def categoryFromOutput(output):
        # 从输出中获取最大值和最大值的索引
        top_n, top_i = output.topk(1)
        category_i = top_i[0].item()
        return all_categories[category_i], category_i
    
    # category, category_i = categoryFromOutput(rnn_output)
    # print("category:", category)
    # print("category_i:", category_i)
    
    def randomTrainingExample():
        # 随机选择一个类别
        category = random.choice(all_categories)
        # 从该类别中随机选择一个人名
        line = random.choice(category_lines[category])
        # 将人名转换为张量
        category_tensor = torch.tensor([all_categories.index(category)], dtype=torch.long)
        line_tensor = lineToTensor(line)
        return category, line, category_tensor, line_tensor
    
    
    # 构建传统RNN训练函数
    criterion = nn.NLLLoss()
    learning_rate = 0.005
    def trainRNN(category_tensor, line_tensor):
        hidden = rnn.initHidden()
        rnn.zero_grad()
        output = None
        for i in range(line_tensor.size()[0]):
            output, hidden = rnn(line_tensor[i], hidden)
        
        # rnn对象由nn.RNN实例化得到,最终输出得到的是三维张量,为了满足category_tensor的维度要求,需要将其转换为二维张量
        loss = criterion(output.squeeze(0), category_tensor)
        loss.backward()
        # 更新参数
        for p in rnn.parameters():
            p.data.add_(-learning_rate, p.grad.data)
        return output, loss.item()
    
    def trainLSTM(category_tensor, line_tensor):
        hidden, c = lstm.initHiddenAndC()
        lstm.zero_grad()
        output = None
        for i in range(line_tensor.size()[0]):
            output, hidden, c = lstm(line_tensor[i], hidden, c)
        
        loss = criterion(output.squeeze(0), category_tensor)
        loss.backward()
        for p in lstm.parameters():
            p.data.add_(-learning_rate, p.grad.data)
        return output, loss.item()
    
    def trainGRU(category_tensor, line_tensor):
        hidden = gru.initHidden()
        gru.zero_grad()
        output = None
        for i in range(line_tensor.size()[0]):
            output, hidden = gru(line_tensor[i], hidden)
        
        loss = criterion(output.squeeze(0), category_tensor)
        loss.backward()
        for p in gru.parameters():
            p.data.add_(-learning_rate, p.grad.data)
        return output, loss.item()
    
    # 构建时间计算函数
    def timeSince(since):
        now = time.time()
        s = now - since
        m = math.floor(s / 60)
        s -= m * 60
        return "%dm %ds" % (m, s)
    
    
    # 完整的训练函数
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    n_iters = 1000
    print_every = 50
    plot_every = 10
    def train(train_type_fn):
        # 每个制图间隔损失保存列表
        all_losses = []
        # 获得开始的时间戳
        start = time.time()
        current_loss = 0
        for iter in range(1, n_iters + 1):
            category, line, category_tensor, line_tensor = randomTrainingExample()
            output, loss = train_type_fn(category_tensor, line_tensor)
            current_loss += loss
            if iter % print_every == 0:
                guess, guess_i = categoryFromOutput(output)
                correct = "✓" if guess == category else "✗ (%s)" % category
                print("%d %d%% (%s) %.4f %s / %s %s" % (iter, iter / n_iters * 100, timeSince(start), loss, line, guess, correct))
            if iter % plot_every == 0:
                all_losses.append(current_loss / plot_every)
                current_loss = 0
        return all_losses, int(time.time() - start)
    
    
    # 训练并制作对比图
    all_losses1, period1 = train(trainRNN)
    all_losses2, period2 = train(trainLSTM)
    all_losses3, period3 = train(trainGRU)
    
    plt.figure(0)
    plt.plot(all_losses1, label='RNN')
    plt.plot(all_losses2, color='red', label='LSTM')
    plt.plot(all_losses3, color='green', label='GRU')
    plt.legend(loc='upper left')
    
    plt.figure(1)
    x_data = ['RNN', 'LSTM', 'GRU']
    y_data = [period1, period2, period3]
    plt.bar(range(len(x_data)), y_data, color='green', tick_label=x_data)
    
    # 构建评估函数
    def evaluateRNN(line_tensor):
        output = None
        hidden = rnn.initHidden()
        for i in range(line_tensor.size()[0]):
            output, hidden = rnn(line_tensor[i], hidden)
        return output.squeeze(0)
    
    def evaluateLSTM(line_tensor):
        output = None
        hidden, c = lstm.initHiddenAndC()
        for i in range(line_tensor.size()[0]):
            output, hidden, c = lstm(line_tensor[i], hidden, c)
        return output.squeeze(0)
    
    def evaluateGRU(line_tensor):
        output = None
        hidden = gru.initHidden()
        for i in range(line_tensor.size()[0]):
            output, hidden = gru(line_tensor[i], hidden)
        return output.squeeze(0)
    
    # 构建预测函数
    def predict(input_line, evaluate, n_predictions=3):
        print("\n> %s" % input_line)
        with torch.no_grad():
            output = evaluate(lineToTensor(input_line))
            topv, topi = output.topk(n_predictions, 1, True)
            predictions = []
            for i in range(n_predictions):
                value = topv[0][i].item()
                category_index = topi[0][i].item()
                print("(%.2f) %s" % (value, all_categories[category_index]))
                predictions.append([value, all_categories[category_index]])
                
    # 调用试试
    for evaluate_fn in [evaluateRNN, evaluateLSTM, evaluateGRU]:
        predict('Dovesky', evaluate_fn)
        predict('Jackson', evaluate_fn)
        predict('Satoshi', evaluate_fn)
        
    

标签:人名,RNN,--,self,tensor,output,hidden,line,size
From: https://www.cnblogs.com/GreenOrange/p/18207058

相关文章

  • 【SpringBoot】服务停止数据源的关闭时机
    1 前言微服务中我们会用到数据源,数据源中其实就是管理我们的数据库连接,对于数据库而言,连接数是很珍贵的资源,所以释放无用或者长时间空闲的连接显得很重要。那么对于微服务比如我们的SpringBoot当服务启动的时候会初始化数据源,那么停止的时候,是如何关闭数据源,释放连接的呢?这......
  • 在Linux中,RAID级别有哪些?
    RAID(RedundantArrayofIndependentDisks,独立磁盘冗余阵列)是一种将多个磁盘驱动器组合成一个逻辑单元的数据存储虚拟化技术,用于提高数据的可靠性、性能和/或容量。RAID有多种级别,每种级别都有其特定的性能、可靠性和成本效益。以下是一些常见的RAID级别:1.RAID0(条带化)特点:将......
  • Django与前端框架协作开发实战:高效构建现代Web应用
    title:Django与前端框架协作开发实战:高效构建现代Web应用date:2024/5/2220:07:47updated:2024/5/2220:07:47categories:后端开发tags:DjangoREST前端框架SSR渲染SPA路由SEO优化组件库集成状态管理第1章:简介1.1Django简介Django是一个高级的PythonWeb......
  • 在Linux中,如何查看网络接口的状态?
    在Linux中,查看网络接口的状态可以使用多种命令和工具,这些工具提供了接口的配置、活动状态、统计信息等。以下是一些常用的方法:1.ifconfig命令ifconfig(网络接口配置)是一个传统的命令行工具,用于显示和配置网络接口。ifconfig或者,查看特定接口的状态:ifconfiginterface_name......
  • 在Linux中,如何查看系统资源使用情况?
    在Linux系统中,查看系统资源使用情况是一项常见的任务,可以通过多种命令完成。以下是一些主要的命令和它们的功能:1.查看内存使用情况(free命令)基本用法:free-h这个命令显示内存(包括物理内存和交换空间)的总用量、已用量、空闲量等信息。-h选项使得输出以人类可读的格式(如K......
  • 在Linux中,如何管理磁盘配额?
    在Linux中,磁盘配额(DiskQuotas)是一种限制用户或组磁盘使用量的机制,以防止单个用户或组消耗过多磁盘空间,影响其他用户的使用。以下是管理磁盘配额的步骤:1.确认磁盘配额是否已启用首先,需要确认你的系统是否支持磁盘配额,以及是否已经启用。cat/proc/sys/fs/quota如果输出为0,则......
  • P2606 [ZJOI2010] 排列计数
    P2606[ZJOI2010]排列计数树形dp序列中每个位置的限制只有另外一个位置,那么我们将这样的限制连线,就可以得到一棵树。在这题中,这棵树刚好是小根堆,一棵完全二叉树。题目就转化为一共有多少种小根堆。那么显然的\(a_1=1\),然后左子树和右子树分剩下的\([2,n]\),并且左右子树不互......
  • 架构理解:从理论到实践的深度探索
    架构理解:从理论到实践的深度探索石家庄铁道大学,河北省,石家庄市,赵金荣摘要:本文旨在深入探讨软件架构的概念、重要性及其在现代软件开发中的核心作用,特别参考了王概凯先生在其“架构漫谈”系列中的见解与实践案例。通过分析软件架构的基本原则、设计模式、决策因素以及面对挑战......
  • PMP——如何区分赶工与快速跟进?
    如何区分赶工与快速跟进?    在PMP考试中经常出现由于时间不够需要进行进度压缩的场景。进度压缩的常用工具有赶工和快速跟进两种方式。也可以辅助调整某些活动的提前量与滞后量来进行缓解。提前量是相对于紧前活动,紧后活动可以提前的时间量。滞后量是相对于紧前活动,紧后......
  • 实验5
    task1_1.c点击查看代码#include<stdio.h>#defineN5voidinput(intx[],intn);voidoutput(intx[],intn);voidfind_min_max(intx[],intn,int*pmin,int*pmax);intmain(){inta[N];intmin,max;printf("录入%d个数据:\n",N)......