首页 > 其他分享 >New Series: Ring Theory

New Series: Ring Theory

时间:2024-05-22 16:54:56浏览次数:17  
标签:prime domain Theory integral ideal iff New Ring unit

New Series: Ring Theory

摘抄一下定理,性质,笔记。

Lec 8. Properties of Ideals (Suppose \(1\not=0\))

\(A\subseteq R\).

Def: ideal generated by \(A\) : Smallest ideal of \(R\) containing \(A\) denoted by \((A)\).

Def: \(RA=\{\sum r_ia_i\}\), similar define the \(AR\) and \(RAR\).

Def: The ideal generated by a single element \((a)\) is called a principal ideal.

Def: The ideal generated by a finite set is called a finite generated ideal.

我们知道,可数多个 ideals 的交也是 ideal,所以我们有 \((A)=\bigcap_{A\subseteq I} I\), \(I\) is an ideal.

\(RA\) 是 left ideal generated by \(A\)。因为 \(RA\) 对左乘 \(r\) 元素,加法封闭(依定义),同时如果包含 \(A\) 并且是 ideal,必须满足 \(ra\) 都是 \(I\) 的元素。故 \(RA\) is minimal.

Similar \(AR\) is right ideal generated by \(A\), \(RAR\) is ideal generated by \(A\).

In particular, \(R\) is commutative \(\implies\) \(AR=RA=RAR\).

$\implies $If \(R\) is commutative, \((a)\) is only the set \(S=\{ra\}\). But if \(R\) is not commutative, \(\{ras\}\) is not necessary to be a ideal since \(ras\) is not close under addition.

我们能看到交换环的美好性质,如果 \(b\in (a)\),那么就说明 \(b=ra\) 也就是 \(b\) 是 \(a\) 的divisor。

Prop. 9

\(I\) is an ideal of \(R\).

  1. \(I=R\) \(\iff\) \(I\) contains a unit.

    Proof: Assume \(u\in I\) is a unit, \(uv=1\). Then \(r(uv)=(ru)v\), that is \(ru\in R,v\in I\). \(R=I\).

  2. Assume \(R\) is commutative. \(R\) is a field \(\iff\) only ideals are \(0\) and \(R\).

    Proof: \(R\) is a field \(\iff\) every non-zero element is a unit(definition). Thus, every ideal contains a unit, \(0\) and \(R\).

    Conversely, \(\forall a\in R\), \(1\in (a)\), Since \(R\) is commutative, \(1=ba\), thus \(a\) is a unit.\(\square\)

Corollary. 10

\(R\) is a field. Then any homo. \(\varphi:R\to S\), \(\varphi=0\) (\(\ker \varphi=R\)) or \(\varphi\) (\(\ker\varphi=0\)) is injective.

Lec 9. Ring Theory Continued

定义 \(M\) 是一个 maximal ideal,当且仅当 \(S\) 的 ideal 包含 \(M\) 的只有 \(M\) 与 \(S\)。(not necessary commutative)

Prop. 11

有单位元的环的 Proper ideal 都有一个 maximal ideal.

证明可能用到选择公理状物。

Prop. 12

Assume \(R\) is commutative. \(M\le R\) is maximal \(\iff\) \(R/M\) is a field.

\(M\) is maximal \(\iff\) no ideal contains \(M\) is not \(R\). By lattice iso. thm., any ideals containing \(M\) correspond bijective with the ideals of \(R/M\). That is a ring has no non-simple ideal \(\iff\) field.

Def: prime ideal: Assume \(R\) is commutative. An ideal \(P\) is called a prime ideal \(\iff\) \(P\not=R\) and whenever \(ab\in P\) \(\implies\) \(a\in P\) or \(b\in P\).

Prop. 13

Assume \(R\) is commutative. prime ideal \(\iff\) \(R/P\) is an integral domain.

\((a+P)(b+P)=0+P\) \(\iff ab+P=0+P\) \(\iff a\in P\) or \(B\in P\) i.e. \(a+P=0\) or \(b+p=0\). \(R/P\) is an integral domain.

Corollary. 14

Let \(R\) be commutative. Every maximal ideal is a prime ideal.

\(R/M\) is field then \(R/M\) is an integral domain. Then \(M\) is prime.

Rings of Fractions (R is commutative)

Thm. 15

We can construct a new ring that contain \(R\). \(D\) be a subset that not contains zero divisor.

\(Q=\{rd^{-1}\},r\in R,d\in D\).

......

Euclidean Domains (R is commutative)

Define a norm function \(N:R\to \mathbb{Z}^+\cup\{0\}\), \(N(0)=0\) on an integral domain \(R\).

If \(\forall a\not=0\), \(N(a)>0\), then \(N\) is called a positive norm.

The integral domain \(R\) is said to be a Euclidean Domain if \(\exist N,\forall a,b\in R,b\not=0\),\(\exist q,r\in R\). s.t. \(a=qb+r\), \(N(b)>N(r)\).

\(q\) : quotient, \(r\) : remainder.

Prop.1

Every ideal in a Euclidean Domain is principal. More precisely, if \(I\) is any non-zero ideal in \(R\), then \(I=(d)\) where d is any non-zero element with minimum norm in \(I\).

Proof : \(d\in I\), \((d)\subseteq I\). \(\forall a\in I\), \(a=qd+r\), \(r=a-qd\in I\). Thus \(r\) must equal to \(0\).(minimum norm).

\(qd\in (d)\). \(I=(d)\). \(\square\)


In a Euclidean Domain

Def: \(a|b\) \(\iff\) \(b=qa\). (commutative)

g.c.d. : \(d|a,d|b\), \(\forall g,g|a,g|b\) \(\implies g|d\) . Then \(d\) is said to be \(\gcd(a,b)\) or \((a,b)\).

Prop.2

If \(a\) and \(b\) are non-zero elements in \(R\)(commutative), \((a,b)=(d)\) ,then \(d\) is the gcd of \(a,b\).

The condition is not necessary. Consider in \(\mathbb{Z}[x]\), \(\gcd(x,2)\) is \(1\),however, \((x,2)\not=(1)=R\).

Def: An Integral domain where \(\forall a,b\in R\), \((a,b)\) is principal is called Bezout Domain.

Prop.3

If \((a)=(b)\), then \(\exist u\in R\) is a unit, \(a=ub\).

moreover, if \(d\) and \(d'\) are both \(\gcd(a,b)\), then \(d=ud'\).

Proof: \(d'\in(d)\) then \(d'=ud\).

Thm.4

Assume \(R\) be a Euclidean Domain, we can use Euclid algorithm to obtain the \(\gcd\).

Assume the last nonzero remainder in the algorithm for \(a,b\). Then:

\(\gcd(a,b)=r_n\), \((a,b)=(r_n)\).

Proof:

First of all, the \(\gcd\) always exists since \(R\) is Euclidean Domain and Prop.1.

\(r_{n-1}=q_{n}r_n\), then \(r_n|r_{n-1}\). We can prove \(r_n|a,r_n|b\) by induction. We can find \((a,b)\subseteq (r_n)\)

image-20240521113712411

Then We can see \(r_n\) must have a form of \(ax+by\),then \(r_n\in(a,b)\), that is \((r_n)\subseteq (a,b)\)

P.I.D. (Principal Ideal Domains)

Def: an integral domain in which every ideal is principal is called P.I.D. (necessary)

Euclidean Domain is P.I.D.. But P.I.D is not necessary to be Euclidean Domain.

P.I.D is must be a Bezout domain, however Bezout domain may have non-finite generated ideal.

Prop. 6

We can define the \(\gcd\) similar to the Euclidean domain.

Prop. 7

In a P.I.D, every non-zero prime ideal must be a maximal ideal.

Proof: \(I=(p)\), suppose \(I\subseteq (m)\subseteq R\).

\(p=rm\) , since \((p)\) is prime, the either \(r\in(p)\) or \(m\in(p)\).

\(m\in (p)\iff (m)\subseteq(p)\), \(r\in(p)\iff p=r\cdot m\in (p)\).

Corollary. 8

If \(R\) is any commutative ring s.t. \(R[x]\) is P.I.D then \(R\) is necessary a field.

\(R\) is a subring of \(R[x]\) and \(R[x]\) is an integral domain ,then \(R\) is also an integral domain.

ideal \((x)\) is a nonzero prime ideal in \(R[x]\) since \(R[x]/(x)\) is isomorphic to the integral domain \(R\). Since \((x)\) is maximal \(R[x]/(x)\) is a field. \(\square\)


Unique Factorization Domain U.F.D

Def: Let \(R\) be a integral domain.

  1. Suppose \(r\in R\) is nonzero and not a unit. \(r\) is called irreducible if whenever \(r=ab\), \(a\) or \(b\) is a unit.
  2. The nonzero element \(p\) is called prime iff \((p)\) is prime ideal.
  3. Def: \(a,b\in R\) is said to be associate iff \(a=ub\) where \(u\) is a unit.

Prop.10

In a Integral domain a prime element is always irreducible. \(\forall p=ab,a\in(p)\), \(a=up\), \(p=upb\) then \(ub=1\). \(b\) is unit.

For the simple Integral domain a irreducible element is not necessary prime.

However, in P.I.D a irreducible element is always prime.

Prop.11

In a P.I.D a nonzero element is a prime iff it is irreducible.

\((p)\subseteq (m)=M\), \(p\in(m),p=mr\),\(p\) is irreducible, thus, \(m\) is unit \((p)=(1)\) or \(r\) is unit \(pr^{-1}=m\), \((p)=(m)\).

这也正说明,如果 \(p=ab\), \(p\in(a)\), 用上述结论即可。

Def: U.F.D

A U.F.D is an integral domain in which every nonzero element which is not a unit obeys:

  1. \(r=\prod p_i\) where \(p_i\) all is irreducible.
  2. The decomposition is unique up to associate (\(a=ub\),\(u\) is a unit, then we say \(a,b\) is associate)

Field is a trivially U.F.D since all elements are unit.

Exp: \(\mathbb{Z}[\sqrt{-5}]\) is not a U.F.D, \(6=2\times 3=(1+\sqrt{-5})(1-\sqrt{-5})\).

Prop.12

In a U.F.D a nonzero element is a prime iff it is irreducible.

Only need to prove is irreducible \(\implies\) prime.

\(ab\in(p)\), \(a\in(p)\) or \(b\in(p)\). \(ab=pc\), write the decomposition of \(ab\), \(p\) must be associate to one of the factor of \(a\) or \(b\).

that is \(p|a\) or \(p|b\).

Prop.13

let \(a=u\prod p_i^{a_i},b=v\prod p_i^{b_i}\), \(\gcd(a,b)=\prod p_i^{\min(a_i,b_i)}\).

Thm.14

Every P.I.D is a U.F.D. In particular, every Euclidean Domain is a Unique Factorization Domain.

Field \(\subset\) Euclidean Domain \(\subset\) P.I.D. \(\subset\) U.F.D \(\subset\) integral domain


Gaussian Integers

Polynomial ring

\(R\) is an integral domain, then, \(\deg(p(x)q(x))=\deg(p(x))+\deg(q(x))\).

the unit of \(R[x]\) are just the unit of \(R\).

\(R[x]\) is an integral domain.


Prop.2

Let \((I)=I[x]\) denote the ideal of \(R[x]\) generate by \(I\)(the polynomials with coefficients in \(I\))

\[R[x]/(I)\cong (R/I)[x] \]

In particular, if \(I\) is a prime ideal of \(R\), then \((I)\) is also a prime ideal of \(R[x]\)

We can construct a nature map: \(\varphi:R[x]\to (R/I)[x]\). \(r\to \overline{r}\). it's obviously a ring homo.

\(\ker\varphi=(I)\)

Polynomial Rings over Field

Let F be a field, \(F[x]\) is a Euclidean domain, we can use the \(\deg F\) be the norm.

Prop.5 (Gaussian lemma)

Let \(R\) be a U.F.D with Field of fractions \(F\) and \(P(x)\in R[x]\), if \(P(x)\) can be factorized in \(F[x]\), \(P(x)=A(x)B(x)\). Then \(P(x)\) can also factorized in \(R[x]\), \(P(x)=a(x)b(x)\).

Proof: \(dP(x)=A'(x)B'(x)\) (multiplication the denominator), then assume \(d=\prod p_i\), \(p_i\) is all prime element. RHS,LHS mod \(p_i\), then we get \(0=\overline{A'(x)}\overline{B'(x)}\), since \(R/pR\) is an integral domain, \((R/pR)[x]\) is also an integral domain, that is one of the \(\overline{A'(x)},\overline{B'(x)}\) must be zero.

We can divide \(p_i\) both LHS and RHS to prove the conclusion by induction.

Corollary. 6

Let \(R\) be a U.F.D with field of fraction \(F\) and let \(p(x)\in R[x]\).

Suppose \(\gcd\) of all coefficient is \(1\). Then \(p(x)\) is irreducible in \(R[x]\) iff it is irreducible in \(F[x]\).

正面:\(F[x]\to R[x]\): Gaussian lemma. 反面 \(R[x]\to F[x]\) 显然。

Thm. 7

\(R\) is U.F.D iff \(R[x]\) is U.F.D.

\(R\subseteq R[x]\), so \(R[x]\) is U.F.D \(\implies\) \(R\) is .

证明思路 \(R\) is U.F.D, \(F\) is Field. \(F[x]\) is Euclidean domain(U.F.D).

把 \(p(x)\) 在 \(F[x]\) 分解,然后根据Gaussian lemma, 得到一组在 \(R[x]\) 的解。 \(p(x)=q_1(x)\cdots q_k(x)\).(假设 \(p(x)\) 的系数 \(\gcd=1\),那么每一个 \(q_i(x)\) 系数 \(\gcd=1\))

我们接下来证明唯一性。假设 \(p(x)=\prod q_i(x)=\prod q_i'(x)\),那么 \(q_i(x),q'_j(x)\) 都是在 \(F[x]\) irreducible 的,不妨假设 \(q_i(x)=\frac{a}{b}q'_i(x)\),\(bq_i(x)=aq'_i(x)\), 考察两边的 \(\gcd\),又由于 \(R\) 是 U.F.D 的,故 \(b=ua\), \(u\) is a unit. \(q_i(x),q_i'(x)\) associate 得证。

Coro. 8

多元 \(R[x_1,x_2,\cdots ,x_k]\) 是 U.F.D \(\iff\) \(R\) 是 U.F.D

归纳。

Irreducibility criteria

Prop.9

\(R\) is a field, \(R[x]\) is a Euclidean Domain, then \(p(x)\in R[x]\) has a factor of \(\deg=1\) iff \(p(a)=0\).

\(p(x)=q(x)(x-a)+r\), \(r=0\iff (x-a)|p(x)\).

Prop.10

\(p(x)\in F[x]\), where \(F\) is a Field \(p(x)\)'s degree is \(2\) or \(3\), then if \(p(x)\) is reducible iff \(p(x)\) has a root.

Prop.11

\(\mathbb{Z}[x]\) 上判别 \(\mathbb{Q}\) 根的存在性。 \(p(x)=\frac{s}{r}\) (\(s\) and \(r\) 互质 relatively prime),那么需要 \(r|a_n\), \(s|a_0\)。证明考虑:\(s^np(\frac{s}{r})=0\) 也就是:

\(s^na_0+s^{n-1}ra_1+\cdots+r^na_n=0\), mod \(r\) and \(s\) ,即可得到结论。

Prop. 12

\(I\) is proper ideal in the integral domain \(R\) and let \(p(x)\in R[x]\) and \(p(x)\) is monic.

\(p(x)\to \overline{p(x)}\) (\(R[x]\to(R/I)[x]\) ) , if \(\overline{p(x)}\) is irreducible, then \(p(x)\) is irreducible.

显然的, \(p(x)=a(x)b(x)\),那么 \(\overline{p(x)}=\overline{a(x)}\overline{b(x)}\),又由于 monic,\(\overline{a(x)},\overline{b(x)}\) 不会退化。


很遗憾的,就算对于每一个 ideal 都满足 reducible, 但 \(p(x)\) 还是有可能 irreducible的。


Eisenstein's Criterion

标签:prime,domain,Theory,integral,ideal,iff,New,Ring,unit
From: https://www.cnblogs.com/Phoenix41/p/18206624

相关文章

  • springboot开启热部署
    一、依赖在SpringBoot中启用热部署通常涉及使用SpringBootDevTools依赖和配置。以下是如何在SpringBoot项目中启用热部署的步骤:在pom.xml中添加SpringBootDevTools依赖:<dependencies><!--其他依赖--><dependency><groupId>org.springframework.b......
  • springboot中执行完某些逻辑后,才算bean加载完,applicationContext才加载完毕
    核心思想实现InitializingBean接口,重写afterPropertiesSet方法范例代码importlombok.extern.slf4j.Slf4j;importorg.springframework.beans.factory.InitializingBean;importorg.springframework.stereotype.Component;@Slf4j@ComponentpublicclassDemoimplementsI......
  • [ES2024] Simplify array immutable changes with the new array.with method
    Thenew Array.with methodgivesyouanimmutablesyntaxforchangingvaluesofanarrayataspecifiedindex.Sometimes .map willbemoreefficient.So,inthislessonwe'llcomparebothmethodswhilereplacinganobjectataspecificindex. varto......
  • spring cloud
    什么是SpringCloud?基于SpringBoot的Spring集成应用程序,它利用SpringBoot的开发便利性简化了分布式系统的开发,提供与外部系统的集成。如服务注册与发现、配置中心、负载均衡、断路器、消息总线、数据监控等;换句话说:SpringCloud提供了构建分布式系统所需的“全家桶......
  • 使用winsw 将 spring boot jar包注册称服务
    下载地址:ReleaseWinSWv2.10.3·winsw/winsw·GitHub下载winsw,使用版本WinSWv2.10.3版修改文件名  修改配置<configuration><!--安装成Windows服务后的服务名--><id>nacosConsumer</id><!--显示的服务名称--><name>nacosConsumer</name>&......
  • springboot集成logback-spring.xml日志文件
    logback-spring.xml:<!--Logbackconfiguration.Seehttp://logback.qos.ch/manual/index.html--><configurationscan="true"scanPeriod="10seconds"><springPropertyscope="context"name="logLevel"s......
  • Java核心面试知识集—Spring面试题
    Spring概述(10)什么是spring?Spring是一个轻量级Java开发框架,最早有RodJohnson创建,目的是为了解决企业级应用开发的业务逻辑层和其他各层的耦合问题。它是一个分层的JavaSE/JavaEEfull-stack(一站式)轻量级开源框架,为开发Java应用程序提供全面的基础架构支持。Spring负责基础架构,......
  • Java核心面试知识集—SpringMVC面试题
    概述什么是SpringMVC?简单介绍下你对SpringMVC的理解?SpringMVC是一个基于Java的实现了MVC设计模式的请求驱动类型的轻量级Web框架,通过把模型-视图-控制器分离,将web层进行职责解耦,把复杂的web应用分成逻辑清晰的几部分,简化开发,减少出错,方便组内开发人员之间的配合。SpringMVC......
  • Java核心面试知识集—SpringBoot面试题
    概述什么是SpringBoot?SpringBoot是Spring开源组织下的子项目,是Spring组件一站式解决方案,主要是简化了使用Spring的难度,简省了繁重的配置,提供了各种启动器,开发者能快速上手。SpringBoot有哪些优点?SpringBoot主要有如下优点:容易上手,提升开发效率,为Spring开发......
  • Java核心面试知识集—Spring Cloud面试题
    前言来分享一下面试必备的SpringCloud问题解析!用XMind画了一张导图记录SpringCloud的学习笔记和一些面试解析(源文件对部分节点有详细备注和参考资料,欢迎加入技术Q群分享获取):1.什么是微服务微服务是一种架构⻛格,也是一种服务;微服务的颗粒⽐较⼩,⼀个⼤型复杂软件应⽤由多个......