elasticsearch存储经纬度且按照范围进行查询
背景: 我在客户那边有很多舆情事件数据,数据里面包含的是有经纬度的,项目需求是用户在系统中输入一个地址,系统就可以查询到该地址100米 500米 1000米范围内的事件信息,当然了还可以输入事件的关键信息做模糊查询,所以我选择了使用es来存储引擎。
第一步: 创建ES索引
以下索引是测试环境数据
{
"settings": {
"number_of_shards": 3,
"number_of_replicas": 1
},
"mappings": {
"properties": {
"content": {
"type": "text",
"analyzer": "ik_max_word"
},
"location": {
"type": "geo_point"
},
"id": {
"type": "keyword"
}
}
}
}
第一步: 数据同步
我使用flinkSQL搭配袋鼠云的chunjun来将数据库里面的事件数据写入到ES
下面是我写的flinkSQL脚本
-- 数据库表
CREATE TABLE `location_test` (
`id` VARCHAR,
`content` VARCHAR COMMENT '内容',
`lon` VARCHAR COMMENT '经度',
`lat` VARCHAR COMMENT '纬度'
) WITH (
'connector' = 'mysql-x',
'url' = 'jdbc:mysql://127.0.0.1:3306/xxx?useSSL=false&useInformationSchema=true&nullCatalogMeansCurrent=true&characterEncoding=UTF-8',
'table-name' = 'location_test',
'username' = 'xxx',
'password' = 'xxx',
'scan.fetch-size' = '1024'
);
-- es索引
CREATE TABLE `location_geo_test` (
`id` VARCHAR COMMENT '主键',
`content` VARCHAR COMMENT '内容',
`location` ROW< `lon` VARCHAR, `lat` VARCHAR > COMMENT '经纬度',
PRIMARY KEY (`id`) NOT ENFORCED
) WITH (
'connector' = 'elasticsearch7-x',
'hosts' = '127.0.0.1:15287',
'index' = 'location_geo_test',
'username' = 'xxx',
'password' = 'xxx',
'sink.bulk-flush.max-actions' = '1024',
'sink.bulk-flush.interval' = '2000',
'sink.bulk-flush.max-size' = '5mb'
);
INSERT INTO `location_geo_test`
(SELECT `id`,
`content`,
(`lat`, `lon`)
FROM `location_test`);
flink任务执行完毕之后 查询es数据
{
"took": 15,
"timed_out": false,
"_shards": {
"total": 6,
"successful": 6,
"skipped": 0,
"failed": 0
},
"hits": {
"total": {
"value": 3,
"relation": "eq"
},
"max_score": 1.0,
"hits": [
{
"_index": "location_geo_test",
"_type": "_doc",
"_id": "2",
"_score": 1.0,
"_source": {
"location": {
"lon": "120.165269",
"lat": "30.312568"
},
"id": "2",
"content": "杭州市xxx"
}
},
{
"_index": "location_geo_test",
"_type": "_doc",
"_id": "3",
"_score": 1.0,
"_source": {
"location": {
"lon": "120.163325",
"lat": "30.271001"
},
"id": "3",
"content": "杭州市xxx"
}
},
{
"_index": "location_geo_test",
"_type": "_doc",
"_id": "1",
"_score": 1.0,
"_source": {
"location": {
"lon": "120.165269",
"lat": "30.312568"
},
"id": "1",
"content": "杭州市xxx"
}
}
]
}
}
第三步: 查询
{
"query": {
"geo_distance": {
"location": {
"lon": 120.165269,
"lat": 30.312568
},
"distance": 1,
"distance_type": "arc"
}
}
}
结果
{
"took": 5,
"timed_out": false,
"_shards": {
"total": 6,
"successful": 6,
"skipped": 0,
"failed": 0
},
"hits": {
"total": {
"value": 2,
"relation": "eq"
},
"max_score": 1.0,
"hits": [
{
"_index": "location_geo_test",
"_type": "_doc",
"_id": "2",
"_score": 1.0,
"_source": {
"location": {
"lon": "120.165269",
"lat": "30.312568"
},
"id": "2",
"content": "杭州市xxx"
}
},
{
"_index": "location_geo_test",
"_type": "_doc",
"_id": "1",
"_score": 1.0,
"_source": {
"location": {
"lon": "120.165269",
"lat": "30.312568"
},
"id": "1",
"content": "杭州市xxx"
}
}
]
}
}
标签:存储,经纬度,xxx,content,elasticsearch,location,test,geo,id
From: https://www.cnblogs.com/sxxs/p/18204565