VMware虚拟机 Ubuntu20-LTS
python3.6
tensorflow1.15.0
keras2.3.1
运行截图:
代码:
%matplotlib inline import numpy as np import tensorflow as tf import matplotlib.pyplot as plt plt.rcParams["figure.figsize"] = (14,8) n_observations = 100 xs = np.linspace(-3, 3, n_observations) ys = np.sin(xs) + np.random.uniform(-0.5, 0.5, n_observations) plt.scatter(xs, ys) plt.show() X = tf.placeholder(tf.float32, name='X') Y = tf.placeholder(tf.float32, name='Y') #%% W = tf.Variable(tf.random_normal([1]), name='weight') b = tf.Variable(tf.random_normal([1]), name='bias') #%% Y_pred = tf.add(tf.multiply(X, W), b) #%% loss = tf.square(Y - Y_pred, name='loss') #%% learning_rate = 0.01 optimizer = tf.train.GradientDescentOptimizer(learning_rate).minimize(loss) #%% n_samples = xs.shape[0] with tf.Session() as sess: # 记得初始化所有变量 sess.run(tf.global_variables_initializer()) writer = tf.summary.FileWriter('./graphs/linear_reg', sess.graph) # 训练模型 for i in range(50): total_loss = 0 for x, y in zip(xs, ys): # 通过feed_dic把数据灌进去 _, l = sess.run([optimizer, loss], feed_dict={X: x, Y:y}) total_loss += l if i%5 ==0: print('Epoch {0}: {1}'.format(i, total_loss/n_samples)) # 关闭writer writer.close() # 取出w和b的值 W, b = sess.run([W, b]) print(W,b) print("W:"+str(W[0])) print("b:"+str(b[0])) plt.plot(xs, ys, 'bo', label='Real data') plt.plot(xs, xs * W + b, 'r', label='Predicted data') plt.legend() plt.show()
标签:loss,#%%,plt,name,回归,tf,xs,线性,TensorFlow From: https://www.cnblogs.com/liucaizhi/p/18192332